VAMPIRE

aaaaaaaaa

VAMPIRE

User Manual

Software version 5.0

Manual written by Richard F. L. Evans and Andreas Biternas.

Copyright © 2018 Department of Physics, The University of York, Heslington, York,
YO10 5DD. All rights Reserved.

The VAMPIRE software package is principally developed and maintained by Richard
F. L. Evans. Code contributors: Andrea Meo, Samuel Morris, Matthew Ellis,
Oscar David Arbeldez Echeverri, Weijia Fan, Phanwadee Chureemart, Rory Pond,
Sarah Jenkins, Joe Barker, Thomas Ostler, Andreas Biternas, Roy W Chantrell,
Wu Hong-Ye

The entire VAMPIRE package is available under the GNU General Public License.
You are free to use vampire for personal, academic and commercial research,
and to modify the source code as you wish. For details of the licence, check the
README file in the source code or consult www.gnu.org/copyleft/gpl.html.

The VAMPIRE source code is available from www.github.com/richard-evans/vampire.
This manual, software features, tutorials and more information is available from
the VAMPIRE webpage at http://vampire.york.ac.uk/

Table of Contents

Table of Contents

Preface
Introducing VAMPIRE

1 Background theory
AtomisticSpinModels
The spin Hamiltonian
SpinDynamics L
Citations e

2 Installation
System Requirements
Binaryinstallation
Compiling fromsource
CompilingonLinux
CompilingonMacOSX. i e
CompilingonWindows
CompilingforARCHER
CompilingforGPU

3 Running the code
Running on Unix/Linuxand macOS
RunningonWindows
Logfile e

4 Getting Started
Feature Overview e
Inputand OutputFiles.
Sampleinputfiles

10
10
11
11
12

14
14
14
15
15
15
15
16
16

17
17
17
17

5 Unit Cell Files 22

Theunitcellfileformat 22
Example: Simple CubicSystem L 25
6 Input File Command Reference 26
System Generation. L 26
createxfull ..o 26
Createicube L L 26
createcylinder 26
createcellipsoid L 26
createisphere L 26
createitruncated-octahedron Lo oL 26
create:particle 27
create:particle-array 27
create:voronoi-film Lo Lo 27
createivoronoi-size-variance 27
create:voronoi-row-offset L oo oo 27
create:voronoi-random-seed 27
createivoronoi-rounded-grains Lo oL 28
create:ivoronoi-rounded-grains-area 28
create:particle-parity 28
create:crystal-structure 28
createisingle-spin. e 28
create:periodic-boundaries-x oL oL 28
create:periodic-boundaries-y Lo L L. 28
create:periodic-boundaries-z L L oL 28
create:select-material-by-height 28
create:select-material-by-geometryo Lo L. 28
create:fill-core-shell-particles 28
createiinterfacial-roughness 29
create:material-interfacial-roughness 29
createiinterfacial-roughness-random-seed 29
create:interfacial-roughness-number-of-seed-points 29
createiinterfacial-roughness-type, 29
create:interfacial-roughness-seed-radius 29
create:interfacial-roughness-seed-radius-variance 29
createinterfacial-roughness-mean-height 29
create:interfacial-roughness-maximum-height 29

create:interfacial-roughness-height-field-resolution 29

create:alloy-random-seed L oL 29
create:grain-random-seed Lo 29
createxdilution-random-seed oL 30
createiintermixing-random-seed 30
Systemdimensions L o 30
dimensions:unit-cell-size 30
dimensions:unit-cell-size-x oL oL 30
dimensions:unit-cell-size-y L o L. 30
dimensions:unit-cell-size-z L oL 30
dimensions:system-size oo 30
dimensions:system-size-X Lo 30
dimensionsisystem-size-y 30
dimensionsisystem-size-z oo 30
dimensions:particle-size o 30
dimensions:particle-spacingo oL 30
dimensions:particle-shape-factor-x 31
dimensions:particle-shape-factor-y 31
dimensions:particle-shape-factor-z. 31
dimensions:particle-array-offset-x 31
dimensions:particle-array-offset-y 31
dimensions:macro-cell-size 31
Anisotropy calculation L 31
anisotropy:surface-anisotropy-threshold 31
anisotropy:surface-anisotropy-nearest-neighbour-range 32
anisotropy:enable-bulk-neel-anisotropy 32
Dipole field calculation 32
dipoleisolver 32
SimulationControl 32
simintegrator. 32
SIMIPrOZram o o e e e e e e e e e e 33
sim:enable-dipole-fields 34
sim:enable-fmr-field o o L. 34
sim:enable-fast-dipole-fields 34
sim:dipole-field-update-rate 34
simitime-step 34
sim:total-time-steps 34
sim:loop-time-steps L Lo 34

sim:time-steps-increment Lo Lo Lo 35

sim:equilibration-time-steps 35
sim:simulation-cycles L L oo 35
sim:maximum-temperature Lo 35
sim:minimum-temperature o o L 35
sim:equilibration-temperatureo oL 35
simitemperature L. Lo 35
sim:itemperature-increment.. L. 35
sim:cooling-time 35
sim:laser-pulse-temporal-profile 35
sim:aser-pulse-time L 35
sim:laser-pulse-power L 35
sim:second-laser-pulse-time L ... 35
sim:second-laser-pulse-power 35
sim:second-laser-pulse-maximum-temperature 35
sim:second-laser-pulse-delay-time 35
sim:two-temperature-heat-sink-coupling 35
sim:two-temperature-electron-heat-capacity 35
sim:two-temperature-phonon-heat-capacity 36
sim:two-temperature-electron-phonon-coupling 36
sim:cooling-function Lo 36
sim:applied-field-strength 36
sim:maximum-applied-field-strength 36
sim:equilibration-applied-field-strength 36
sim:applied-field-strength-increment 36
sim:applied-field-angle-theta 36
sim:applied-field-angle-phi, 36
sim:applied-field-unit-vector, 36
sim:demagnetisation-factor 36
sim:integrator-random-seed 36
sim:constraint-rotation-update 37
sim:constraint-angle-theta, 37
sim:constraint-angle-theta-minimum 37
sim:constraint-angle-theta-maximum 37
sim:constraint-angle-theta-increment 37
sim:constraint-angle-phi oL o oL 37
sim:constraint-angle-phi-minimum. 37
sim:constraint-angle-phi-maximum 37

sim:constraint-angle-phi-increment 0L 37

sim:monte-carlo-algorithm 37
sim:checkpoint 37
sim:preconditioning-steps L e 37
Dataoutput. e 38
outputitime-steps Lo 38
outputireal-time 38
outputitemperatureo o 38
output:applied-field-strength 38
output:applied-field-unit-vector, 38
output:applied-field-alignment, 38
output:material-applied-field-alignment 38
output:magnetisation L o 39
output:magnetisation-length 39
output:mean-magnetisation-length 39
output:mean-magnetisation L. 39
output:material-magnetisation oL 39
output:material-mean-magnetisation-length 39
output:material-mean-magnetisation 39
outputitotal-torque 39
output:mean-total-torque L 40
output:constraint-phi L o L oo 40
output:constraint-theta 40
output:material-mean-torque 40
output:mean-susceptibility L oL 40
output:mean-material-susceptibility 41
output:electron-temperature L oL 41
output:phonon-temperature 41
output:itotal-energy 41
output:mean-total-energy oL 41
output:anisotropy-energyo e e 41
output:mean-anisotropy-energy 41
output:iexchange-energy. 41
output:mean-exchange-energy 41
output:applied-field-energy oL 41
output:mean-applied-field-energy 41
output:magnetostatic-energy o oL 41
output:mean-magnetostatic-energy L. 41

outputimpi-timings Lo o 41

output:ignuplot-array-format 41
outputioutput-rate 41
outputiprecision Lo e 42
output:fixed-width 42
Configurationoutput 42
configlatoms 42
configiatoms-output-rate 42
configlatoms-min-x 42
configiatoms-min-y e 43
configlatoms-min-z. L 43
configiatoms-max-X 43
configiatoms-max-y o v vttt e 43
configiatoms-max-Z o it 43
configimacro-cells 43
configimacro-cells-output-rate 43
configloutput-format L o oo 43
configloutput-mode 43
configloutput-nodes 44
7 Material File Command Reference 46
material:num-materials L oo oL 46
material:material-name L o oL 46
material:damping-constant L L oL 46
material:exchange-matrix L. 47
material:atomic-spin-moment L L 47
material:uniaxial-anisotropy-constant 47
material:second-order-uniaxial-anisotropy-constant 48
material:fourth-order-uniaxial-anisotropy-constant 48
material:cubic-anisotropy-constant 48
material:fourth-order-cubic-anisotropy-constant 48
material:uniaxial-anisotropy-direction 48
material:surface-anisotropy-constant 49
material:neel-anisotropy-constant 49
material:lattice-anisotropy-constant 49
material:lattice-anisotropy-file L. 49
materialirelative-gamma L. Lo 50
material:initial-spin-direction L L. 50

material:material-element 50

material:;geometry-file L o 50
materialalloy-host L 50
material:alloy-fraction o L 50
material:minimum-heighto L. 50
material:maximum-height. 51
material:core-shell-size 51
materialiinterface-roughness L. 51
materialiintermixing o 51
material:density e 52
material:continuous L L L oo 52
material:fill-space Lo 52
material:couple-to-phononic-temperature 52
material:temperature-rescaling-exponent 53
material:temperature-rescaling-curie-temperature. 53
material:non-magnetic L e 53
Example materialfiles o L oo 53
Bibliography 54

Introducing VAMPIRE

VAMPIRE is a state-of-the-art atomistic simulator for magnetic nanomaterials. This
software is the culmination of several years of continuous development, with an
aim to make atomistic simulation of magnetic materials routinely available to
the non-specialist researcher. Before now, using atomistic models to simulate
magnetic systems required in depth and technical knowledge of the underlying
theoretical methods, computer programming skills and the ability to debug and
understand intricate computational problems. The code is designed with ease of
use in mind, and includes an extensive set of input parameters to control the
simulations through a plain text input file. Subject to future funding it is also
hoped to develop graphical user interfaces for Mac™ 0OS X and Windows™
which should make using the code more accessible.

The VAMPIRE project is still very much under active development, with an open
development of all code features. The features are always available during the
development stages from the develop branch of the code, but with the caveat that
they are not always fully reliable. Feedback of any bugs or errors to the VAMPIRE
developers is always welcome, as well as any feature requests or enhancements.

We hope that as the VAMPIRE project develops it will become a useful tool for
the magnetics community for specialists and non-specialists alike.

1 Background theory

While the underlying theory behind the atomistic spin model is well known in
the scientific literature, in the following a very brief overview of the fundamental
theory is presented for the benefit of those who do not wish to study the methods
in great detail. If more information is required then a comprehensive review of
the methods implemented in VAMPIRE is available from the project website.

Atomistic Spin Models

Atomistic spin models form the natural limit of two distinct approaches, namely
micromagnetics and ab-initio models of the electronic structure. In micromag-
netics a material is discretized into small domains where the magnetization is
assumed to be fully ordered within it. If the micromagnetic cell size is reduced
to less than 1 nm, then the magnetization is no longer a true continuum, but
a discrete entity considering localized moments on individual atoms. Similarly,
when the electronic properties of the system are considered, the quantum
mechanical properties can be mapped onto atomic cores in a manner similar to
molecular dynamics, where the effective properties can often be treated with a
classical approximation.

The advantage of the atomistic model over micromagnetics is that it naturally
deals with atomic ordering and variation of local properties seen in real materials,
such as interfaces, defects, roughness etc. The discrete formulation also allows
the simulation of high temperatures above and beyond the Curie temperature,
where the usual continuum micromagnetic approach breaks down. Such effects
or often central to current problems in magnetism such as materials for spin elec-
tronics, heat assisted magnetic recording or ultrafast laser processes. Similarly
for ab-initio calculations, mapping onto an effective spin model allows apply the
full quantum mechanical deal of the properties to much larger systems and the
consideration of dynamic effects on much longer timescales.

10

The Spin Hamiltonian

The basis of the atomistic spin model is the spin Hamiltonian, which describes
the fundamental spin-dependent interactions at the atomic level (neglecting
the effects of potential and kinetic energy and electron correlations). The spin
Hamiltonian is typically defined as
H = 72Jijsi'sj szzsﬁ *HSZBapp'Si
1<J i 1

describing exchange, uniaxial anisotropy and applied field contributions respec-
tively. Important parameters are the Heisenberg exchange J;;, the anisotropy
constant k2 and the atomic spin moment, ug. S; is a unit vector which describes
the orientation of the local spin moment. In most magnetic materials the
exchange interactions are the dominant contribution, usually by two orders
of magnitude, and gives rise to the atomic ordering of the spin directions.
For ferromagnetic materials (parallel alignment of spins) J;; > 0, while for
anti-ferromagnetic materials (antiparallel alignment of spins), J;; < 0.

While the exchange interaction determines the ordering of the spins, it is
usually isotropic, and so there is no preferential orientation of all the spins in
the system. Most magnetic materials are anisotropic, that is the spins have a
preferred orientation in space, which arises at the atomic level due to the local
crystal environment, hence its full name of magnetocrystalline anisotropy. In
the model this is most commonly uniaxial anisotropy, where the spins prefer
to lie along a single preferred axis, known as the easy axis. The strength of
the anisotropy is determined by the anisotropy constant, in our case kg, where
positive value prefer alighment along the z-axis, while negative values prefer
alignment around the =z — y plane.

The last term describes the coupling of the spin system to an externally applied
field, Bapp, or Zeeman field. The applied field is used to reverse the orientation
of the spins, and can be used in the simulation to calculate hysteresis loops, for
example.

Spin Dynamics
The spin Hamiltonian describes the energetics of the system, but says nothing
about the dynamic behaviour. For that the Landau-Lifshitz-Gilbert (LLG) equation
is used to descrigg the dynamics of atomic spins. The LLG is given by

i 2

5 *_7(1+A2)[Si x Blg + AS; x (S; x Blg)] (1.1

11

where S; is a unit vector representing the direction of the magnetic spin moment
of site 4, ~ is the gyromagnetic ratio and B is the net magnetic field on each
spin. The atomistic LLG equation describes the interaction of an atomic spin
moment 5 with an effective magnetic field, which is obtained from the negative

first derivative of the complete spin Hamiltonian, such that:
. 1 0
K2

S PFT
where pg is the local spin moment. The inclusion of the spin moment within
the effective field is significant, in that the field is then expressed in units of
Tesla, given a Hamiltonian in Joules. The LLG is integrated numerically using the
Heun numerical scheme, which allows the time evolution of the spin system to be
simulated.

(1.2)

Citations

If you use VAMPIRE for your research, it is helpful to acknowledge the authors of
the code by citing relevant papers and include a statement in the paper such as
the following:

The simulations in this work made use of the VAMPIRE software package [1]

and add a footnote reading:

[11VAMPIRE software package version 5.0 available from https://vampire.york.ac.uk
In addition, it is recommended for reproducibility that you include the githash for
the specific version of the code, which enables someone to checkout the specific
version of the code used for the simulations. [11VAMPIRE software package ver-

sion 5.0 (Version aa842a409c¢68d6724e156df6cabObcaal72f5f41) available from
https://vampire.york.ac.uk

If you use the code, please cite the following article:

Atomistic spin model simulations of magnetic nanomaterials

R. F. L. Evans, W. . Fan, P. Chureemart, T. A. Ostler, M. O. A. Ellis and R. W. Chantrell
J. Phys.: Condens. Matter 26, 103202 (2014)

12

If you use the constrained Monte Carlo method, in addition please cite:

Constrained Monte Carlo method and calculation of the temperature dependence of mag-
netic anisotropy

P. Asselin, R. F. L. Evans,). Barker, R. W. Chantrell, R. Yanes, O. Chubykalo-Fesenko, D. Hinzke
and U. Nowak

Phys. Rev. B. 82, 054415 (2010)

If you use the temperature rescaling method please cite:
Quantitative simulation of temperature-dependent magnetization dynamics and equilibrium
properties of elemental ferromagnets

R. F. L. Evans, U. Atxitia, and R. W. Chantrell
Phys. Rev. B 91, 144425 (2015)

13

2 Installation

This chapter covers the requirements, installation and support for VAMPIRE on
different platforms.

System Requirements

VAMPIRE is designed to be generally portable and compilable on Linux, Unix, Mac
OSX and Windows with a range of different compilers. By design the software has
a very minimal dependence on external libraries to aid compilation on the widest
possible range of platforms without needing to first install and configure a large
number of other packages. VAMPIRE is designed to be maximally efficient on high
performance computing clusters and scalable to thousands of processors, and as
such is the recommended platform if you have access to appropriate resources.

Hardware Requirements

VAMPIRE has been successfully tested on a wide variety of x86 and power PC pro-
cessors. Memory requirements are generally relatively modest for most systems,
though larger simulations will require significantly more memory. VAMPIRE is
generally computationally limited, and so the faster the clock speed and number
of processor cores the better.

Binary installation
Compiled binaries of the latest release version are available to download from:

https://vampire.york.ac.uk/download/

for Linux and Mac™ OS X platforms. For the Linux and Mac OS X releases,
a simple installation script install.sh installs the binary in /opt/vampire/ and
appends the directory to your environment path. On Windows the recommended
method is to use the Linux subsystem for windows developer feature which adds
a linux subsystem that is capable of running the standard linux binary. A copy of
gvoronoi is integrated into VAMPIRE for generating granular structures.

14

Compiling from source

The best way to get the vampire source code is using git, a distributed version
control program which enables changes in the code to be tracked. Git is readily
available on linux (git-core package on ubuntu) and Mac (via MacPorts). To get
vampire from the Github repository checkout your own copy of the repository
using:

git clone git://github.com/richard-evans/vampire.git

This way, updates to the code can be easily merged with the downloaded
version. Compiling is generally as easy as running make in Unix platforms. In
addition, on a multicore processor compilation can be parallelised using the -j V¢
option, where N; is the number of threads to use.

Compiling on Linux

In order to compile in linux, a working set of development tools are needed, which
on ubuntu includes the packages build-essential and g++. VAMPIRE should compile
without issue following a simple make command in the source directory.

For the parallel version, a working installation of openmpi is recommended,
which must usually include a version of the development tools (openmpi-bin and
openmpi-dev packages on ubuntu). Compilation is usually straightforward using
make parallel.

Compiling on Mac OSX
With OS X, compilation from source requires a working installation of Xcode,
available for free from the Mac App Store. In addition command line tools must
also be installed. A working installation of MacPorts is recommended to provide
access to a wide range of open source libraries and tools such as openmpi, rasmol
and povray. For the serial version, compilation is the same as for linux, following
a simple make serial-llvm command in the source directory.

Similarly for the parallel version, openmpi needs to be installed via MacPorts,
and compilation is usually straightforward using make parallel-livm.

Compiling on Windows

The recommended way to use vampire on Windows is to install Linux subsystem
for windows 10 (see https://docs.microsoft.com/en-us/windows/wsl/install-win10).
Older versions of windows are no longer supported. Once installed, you can
download the serial linux binary as for linux and run as normal from the command
line.

15

Compiling for ARCHER/Cray systems

ARCHER is the UK national supercomputer and includes custom compilers de-
veloped by Cray Inc. However, performance is generally better for the gnu
compiler collection and so there is an optimized makefile option for compilation
on the ARCHER and similar Cray XC30 systems. To compile, you need to swap
the environment to the GNU compiler suite using module swap PrgEnv-cray
PrgEnv-gnu. You can then compile with make parallel-archer which will compile a
parallel binary.

Compiling for GPU acceleration with CUDA (beta)

The latest release includes a CUDA implementation for GPU accelerated atomistic
spin dynamics. To compile the CUDA version of the code, you need to install the
CUDA drivers and runtime. Once installed, compilation should be straightforward
using make gcc-cuda. By default, the binary includes device code for a wide range
of architectures. Depending on your device/card, you may need to modify the
device code generation option in the makefile.

16

3 Running the code

To run the code in all version, you first need to specify an input file and material
file, which must reside in the same directory where you run the code. Example
files are available in the source code distribution, or from the Download section
of the website (http://vampire.york.ac.uk/download/index.html).

Unix/Linux and macOS
In the directory including the input and material files, typing

./vampire-serial
will run the code in serial mode. For the parallel mode with openmpi,
mpirun -np 2 vampire-parallel

will run the code in parallel mode, on 2 CPUs. Increasing the -np argument will
run on more cores.

Windows
Once you have installed Linux subsystem for Windows, you can run the code by

launching bash for windows and following the instructions for Unix/Linux systems
above.

Log file

When you run the program it will output some program information to screen to
indicate that the program is running listing some details about the developers and
some steps on the program execution. There are also options to tell the program
to output simulation data to screen to see how the simulation is progressing. In
addition, a log file is produced which provides more detail about the execution of
the program and progress including timestamps, and errors that may occur and

17

certain performance metrics, such as time to update the dipole field or output a
spin configuration file. Asample screen output header from the program is shown
below.

Version 5.0.0 Aug 25 2018 23:01:25
Git commit: 4377c4a8c3b2334decf6b3892542927fcaddebc7
Licensed under the GNU Public License(v2). See licence file for details.
Lead Developer: Richard F L Evans <richard.evansQyork.ac.uk>
Contributors: Andrea Meo, Rory Pond, Weijia Fan,
Phanwadee Chureemart, Sarah Jenkins, Joe Barker,
Thomas Ostler, Andreas Biternas, Roy W Chantrell,
Wu Hong-Ye, Matthew Ellis, Razvan Ababei,

Sam Westmoreland, Oscar Arbelaez, Sam Morris

Compiled with: LLVM C++ Compiler
Compiler Flags:

Vampire includes a copy of the ghull library from C.B. Barber and
The Geometry Center and may be obtained via http from www.ghull.org.

18

4 Getting Started

VAMPIRE is a powerful software package, capable of simulating many different
systems and the determination of parameters such as coercivity, Curie and Néel
temperatures, reversal dynamics, statistical behaviour and more. This chapter
contains an overview of the capabilities of VAMPIRE and how to use them.

Feature Overview

The features of the VAMPIRE code are split into three main categories: material
parameters, structural parameters, and simulation parameters. Details of these
parameters are given in the following chapters, but between them they define the
parameters for a particular simulation.

Materials

Material parameters essentially define the magnetic properties of a class of
atoms, including magnetic moments, exchange interactions, damping constants
etc. VAMPIRE includes support for up to one hundred defined materials, and
material parameters control the simulation of multilayers, random alloys, core
shell particles and lithographically defined patterns.

Structures

Structural parameters define properties such as the system size, shape, particle
size, or voronoi grain structures. In combination with material parameters they
essentially define the system to be simulated.

Simulations

VAMPIRE includes a number of built-in simulations for determining the most com-
mon magnetic properties of a system, for example Curie temperature, hysteresis
loops, or even a time series. Additionally the parameters for these simulations,
such as applied field, maximum temperature, temperature increment, etc. can
be set.

19

Input and Output Files

VAMPIRE requires at least two files to run a simulation, the input file and the
material file. The input file defines all the properties of the simulated system,
such as the dimensions or particle shape, as well as the simulation parameters
and program output. The material file defines the properties of all the materials
used in the simulation, and is usually given the .mat file extension. A sample
material file Co.mat is included with the code which defines a minimum set of
parameters for Co.

The output of the code includes a main output file, which records data such
as the magnetisation, timesteps, temperature etc. The format of the output file
is fully customisable, so that the amount of output data is limited to what is
useful. In addition to the output file, the other main available outputs are spin
configuration files, which with post-processing allow output of snapshots of the
magnetic configurations during the simulation.

Sample input files

Sample input and output files are included in the source code distribution, but
the files for a simple test simulation which computes the time dependence of the
magnetisation of a cubic system are given here.

S
©
c
~

Sample vampire input file to perform

benchmark calculation for version 5.0

A

Creation attributes:

EE

create:crystal-structure = sc

System Dimensions:

EE

dimensions:unit-cell-size = 3.54 !A
dimensions:system-size-x = 7.7 !mm
dimensions:system-size-y = 7.7 !mnm

dimensions:system-size-z = 7.7 !mm

Material Files:

L

20

material:file = Co.mat

Simulation attributes:

E

sim:temperature = 300.0
sim:time-steps-increment = 1000
sim:total-time-steps = 10000

sim:time-step = 1 !fs

#

Program and integrator details

#
sim:program = benchmark

sim:integrator = llg-heun

#* 3

data output

3

output:real-time
output:temperature
output:magnetisation

output :magnetisation-length

screen:time-steps

screen:magnetisation-length

Co.mat

Sample vampire material file version 5

Number of Materials

E

material:num-materials=1

Material 1 Cobalt Generic

L

material[1] :material-name = Co
material[1] :damping-constant = 1.0
material[1] :exchange-matrix[1] = 11.2e-21

material[1]:atomic-spin-moment = 1.72 !muB

material[1]:uniaxial-anisotropy-constant = 1.0e-24

material[1] :material-element = Ag
material[1] :minimum-height = 0.0

material[1] :maximum-height = 1.0

21

5 Unit Cell Files

VAMPIRE provides a selection of built-in unit cell crystal structures which can be
specified with the create:crystal-structure keyword. However, there are many
more crystal structures and magnetic materials than the code could possibly
support, and so an advanced mode is available where the user can specify any
atomic structure and exchange interactions which are then imported into the
code and can be used to generate large systems and/or cut into the standard
geometric shapes. Itis also possible to simulate complex non-periodic structures
such as nanoparticles obtained from molecular dynamics simulations with the
same approach. The unit cell file is specified in the main input file using the
keyword:

material:unit-cell-file = file.ucf

where "file.ucf" is the filename.

The unit cell file format

The unit cell file is split into two main parts. The first part specifies the unit
cell shape, the atoms in the unit cell, and their material associations and cate-
gorisation for statistics purposes. The second part specifies all atomic exchange
interactions within and between neighbouring unit cells. The general plain text
format is as follows:

Unit cell size:
ucx ucy ucz
Unit cell lattice vectors:

UCVXX UuCvVXy ucvxz

1

2

3

4

5 ucvyx ucvyy ucvyz
6 ucvzx ucvzy ucvzz
7 # Atoms

8 num_atoms_in_unit_cell number_of_materials
9 atom_id cx cy cz [mat_id cat_id hcat_id]
10 ...

22

11
12 # Interactions
13 num_interactions [exchange_typel
14 IID i j dx dy dz | Jij
| Jx Jy Jz
| Jxx Jxy Jxz Jyx Jyy Jyz Jzx Jzy Jzz

In general this format now allows the specification of any system we want, but
clearly complex multi- layered systems require large file sizes. Working through
line by line:

23

4—-6

9-10

12

13

defines a comment line which is ignored by the parser - so
these lines are optional.

ucx, ucy and ucz are the unit cell size in angstroms.

These lines define the shape of the unit cell to be replicated,
for cubic cells this is the unit matrix. Note that at present only
orthogonal lattice vectors are supported by the code due to
complexities relating to parallelisation.

Define the number of atoms and number of materials in
the unit cell. Materials allow grouping of atoms by material,
and have the same parameters (ie moment, damping, etc).
Material specification affects the way statistics are collected
and displayed, and also allows the simple creation of ordered
alloys. The list of atoms must immediately follow this line.
These lines define the atoms in each unit cell and their
parameters:

atom_id Number identifier of atom in unit cell, starts at 0.
cx,cy,cz unit cell coordinates as a fraction of unit cell size
mat_id material id of the atom, integer starting at 0

cat_id category id of the atom, used for calculating properties
not categorised by material, eg height or sublattice. Integer
starting at 1.

hcat_id Height category id used for calculating properties as a
function of height

Defines the total number of interactions for the unit cell and
the expected type of exchange (isotropic, vectorial, tensorial,
normalized-isotropic, normalized-vectorial, normalized-ten-
sorial). No lines are allowed between this line and the list of
interactions.

These lines list all the interactions.

IID Interaction ID is only used for accounting purposes, starts
at 0.

i Atom number of atom in local unit cell

j Atom number of atom in local/remote unit cell
dxuc,dyuc,dzuc relative integer coordinates of unit cell for
atomj

Jij, Jxx... Exchange values specified in Joules.

24

Example: Simple Cubic System

As an example, here is a complete sample file for a simple cubic system with a
single material.

Unit cell size:

.54 3.54 3.54

Unit cell vectors:

.0 0.0 0.0

.0 1.0 0.0

.0 0.01.0

Atoms num_atoms num_materials; id cx cy cz mat cat hcat
1

00.00.00.0000

Interactions n exctype; id i j dx dy dz Jij

© 00 N O o W N -
= # O O B H# W H#

=
= O

6 isotropic
0

e O
o O W N
g W N e

17

Here only easy axis anisotropy and isotropic exchange are defined. Since there is
only asingle atomin the unitcell, alli-j pairs are 0-0, but over the neighbouring unit
cells +1 in all directions. This generally leads to a large number of interactions for
increasing numbers of atoms in the unit cell, and in future | will write a program
to generate some different lattices and interaction lists.

25

6 Input File Command Reference

The input file can accept a large number of commands, and this chapter gives a
comprehensive list of all the options and what they do. Commands are in the form
category:keyword=value, where value can be optional depending on the keyword.

System Generation

The following commands control generation of the simulated system, including
dimensions, crystal structures etc.

create:full Uses the entire generated system without any truncation or consid-
eration of the create:particle-size parameter. create:full should be used when
importing a complete system, such as a complete nanoparticle and where a
further definition of the system shape is not required. This is the default if no
system truncation is defined.

create:cube Cuts a cuboid particle of size I, = [, = [, = create:particle-size from
the defined crystal lattice.

create:cylinder Cuts a cylindrical particle of diameter create:particle-size from
the defined crystal lattice. The height of the cylinder extends to the whole extent
of the system size create:system-size-z in the z-direction.

create:ellipsoid Cuts an ellipsoid particle of diameter create:particle-size with
fractional diameters of dimensions:particle-shape-factor-x,dimensions:particle-shape-factor-y,c

from the defined crystal lattice.

create:sphere Cuts a spherical particle of diameter create:particle-size from the
defined crystal lattice.

create:truncated-octahedron Cuts a truncated octahedron particle of diameter
create:particle-size from the defined crystal lattice.

26

create:particle Defines the creation of a single particle at the centre of the
defined system. If create:particle-size is greater than the system dimensions then
the outer boundary of the particle is truncated by the system dimensions.

create:particle-array Defines the creation of a two-dimensional array of particles
onasquare lattice. The particles are separated by a distance create:particle-spacing.
If the system size is insufficient to contain at least a single entire particle of
size create:particle-size then no atoms will be generated and the program will
terminate with an error.

create:voronoi-film Generates a two-dimensional voronoi structure of particles,
with a mean grain size of create:particle-size and variance create:voronoi-size-variance
as a fraction of the grain size. If create:voronoi-size-variance=0 then hexagonal
shaped grains are generated. The spacing between the grains (defined by
the initial voronoi seed points) is controlled by create:particle-spacing. The
pseudo-random pattern uses a predefined random seed, and so the generated
structure will be the same every time. A different structure can be generated
by setting a new random seed using the create:voronoi-random-seed parameter.
Depending on the desired edge structure, the first row can be shifted using the
create:voronoi-row-offset flag which changes the start point of the voronoi pat-
tern. The create:voronoi-rounded-grains parameter generates a voronoi struc-
ture, but then applies a grain rounding algorithm to remove the sharp edges.

create:voronoi-size-variance=[float] Controls the randomness of the voronoi
grain structure. The voronoi structure is generated using a hexagonal array
of seed points appropriately spaced according to the particle size and particle
spacing. The seed points are then displaced in z and y according to a gaussian
distribution of width create:voronoi-size-variance times the particle size. The
variance must be in the range 0.0-1.0. Typical values for a realistic looking grain
structure are less than 0.2, and larger values will generally lead to oblique grain
shapes and a large size distribution.

create:voronoi-row-offset flag [default false] Offsets the first row of hexagonal
points to generate a different pattern, e.g. 2,3,2 grains instead of 3,2,3 grains.

create:voronoi-random-seed = int Sets a different integer random seed for
the voronoi seed point generation, and thus produces a different random grain

27

structure.

create:voronoi-rounded-grains flag [default false] Controls the rounding of
voronoi grains to generate more realistic grain shapes. The algorithm works by
expanding a polygon from the centre of the grain, until the total volume bounded
by the edges of the grain is some fraction of the total grain area, defined by
create:voronoi-rounded-grains-area. This generally leads to the removal of sharp
edges.

create:voronoi-rounded-grains-area = float [0.0-1.0, default 0.9] Defines the
fractional grain area where the expanding polygon is constrained, in the range
0.0-1.0. Values less than 1.0 will lead to truncation of the voronoi grain shapes,
and very small values will generally lead to circular grains. A typical value is 0.9

for reasonable voronoi variance.

create:particle-centre-offset shifts the origin of a particle to the centre of the
nearest unit cell.

create:crystal-structure = string [sc,fcc,bcc,hcp,rocksalt; default sc] Defines
the default crystal lattice to be generated.

create:single-spin flag Overrides all create options and generates a single iso-
lated spin.

create:periodic-boundaries-x flag creates periodic boundaries along the z-direction.
create:periodic-boundaries-y flag creates periodic boundaries along the y-direction.
create:periodic-boundaries-z flag creates periodic boundaries along the z-direction.

create:select-material-by-height specifies that materials are preferentially as-
signed by their height specification.

create:select-material-by-geometry specifies that materials are preferentially
assigned by their geometric specification (eg in core-shell systems).

create:fill-core-shell-particles

28

create:interfacial-roughness specifies that a global roughness is applied to the
material height specification (eg from a non-flat substrate).

create:material-interfacial-roughness specifies that a material-specific rough-
ness is applied to the material height specification (eg from differences in local
deposition rate).

create:interfacial-roughness-random-seed specifies the random seed for gen-
erating the roughness pattern, where different numbers generate different ran-
dom patterns. Number should ideally be large and around 2,000,000,000.

create:interfacial-roughness-number-of-seed-points determines the undula-
tion for the roughness, where more points gives a larger undulation.

create:interfacial-roughness-type determines whether the roughness is ap-
plied as peaks or troughs in the material-specific material heights. Valid options
are "peaks" or "troughs".

create:interfacial-roughness-seed-radius
create:interfacial-roughness-seed-radius-variance
create:interfacial-roughness-mean-height
create:interfacial-roughness-maximum-height
create:interfacial-roughness-height-field-resolution
create:alloy-random-seed integer [default 683614233] Sets the random seed
for the psuedo random number generator for generating random alloys. Simula-
tions use a predictable sequence of psuedo random numbers to give repeatable
results for the same simulation. The seed determines the actual sequence of
numbers and is used to generate a different alloy distribution. Note that different
numbers of cores will change the structure that is generated.
create:grain-random-seed integer [default 683614233] Sets the random seed

for the psuedo random number generator for generating random grain struc-
tures.

29

create:dilution-random-seed integer [default 683614233] Sets the random
seed for the psuedo random number generator for diluting the atoms, leading to
a different realization of a dilute material. Note that different numbers of cores
will change the structure that is generated.

create:intermixing-random-seed integer [default 683614233] Sets the ran-
dom seed for the psuedo random number generator for calculating intermixing of

materials. A different seed will lead to a different realization of a dilute material.
Note that different numbers of cores will change the structure that is generated.

System dimensions

The commands here determine the dimensions of the generated system.

dimensions:unit-cell-size = float [0.1 A- 10 ;» m, default 3.54 A] Defines the size
of the unit cell.

dimensions:unit-cell-size-x Defines the size of the unit cell if asymmetric.
dimensions:unit-cell-size-x Defines the size of the unit cell if asymmetric.
dimensions:unit-cell-size-z Defines the size of the unit cell if asymmetric.
dimensions:system-size Defines the size of the symmetric bulk crystal.
dimensions:system-size-x Defines the total size if the system along the z-axis.
dimensions:system-size-y Defines the total size if the system along the y-axis.
dimensions:system-size-z Defines the total size if the system along the z-axis.

dimensions:particle-size = float Defines the size of particles cut from the bulk
crystal.

dimensions:particle-spacing Defines the spacing between particles in particle
arrays or voronoi media.

30

dimensions:particle-shape-factor-x = float [0.001-1, default 1.0] Modifies the
default particle shape to create elongated particles. The selected particle shape
is modified by changing the effective particle size in the z direction. This property
scales the as a fraction of the particle-size along the z-direction.

dimensions:particle-shape-factor-y = float [0.001-1, default 1.0] Modifies the
default particle shape to create elongated particles. The selected particle shape
is modified by changing the effective particle size in the y direction. This property
scales the as a fraction of the particle-size along the y-direction.

dimensions:particle-shape-factor-z = float [0.001-1, default 1.0] Modifies the
default particle shape to create elongated particles. The selected particle shape
is modified by changing the effective particle size in the z direction. This property
scales the as a fraction of the particle-size along the z-direction.

dimensions:particle-array-offset-x [0-10* A] Translates the 2-D particle array
the chosen distance along the x-direction.

dimensions:particle-array-offset-y Translates the 2-D particle array the chosen
distance along the y-direction.

dimensions:double macro-cell-size determines the macro cell size for calcula-
tion of the demagnetizing field and output of the magnetic configuration. Finer
discretisation leads to more accurate results at the cost of significantly longer
run times. The cell size should always be less than the system size, as highly
asymmetric cells will leads to significant errors in the demagnetisation field
calculation.

Anisotropy calculation

The following commands control the calculation of the magnetic anisotropy en-
ergy for the system. anisotropy:surface-anisotropy-threshold integer default
[native] Determines minimal number of neighbours to classify as surface atom.
The default value is the number of neighbours specified by the crystal or unit cell
file. You can set this as a lower threshold.

31

anisotropy:surface-anisotropy-nearest-neighbour-range float default [co] Sets
the interaction range for the nearest neighbour list used for the surface anisotropy
calculation.

anisotropy:enable-bulk-neel-anisotropy bool default false Enables calculation
of the Néel pair anisotropy in the bulk, irrespective of the number of neighbours,
enabling the effect of localised spin-orbit interactions. Internally this sets a
large threshold, and so specifying anisotropy:surface-anisotropy-threshold will
override this flag.

Dipole field calculation

The following commands control the calculation of the dipole-dipole field. By
default the dipole fields are disabled for performance reasons, but for large
systems (> 10 nm) the interactions can become important. The VAMPIRE code
implements several different solvers balancing accuracy and performance. The
default in V5+ is the tensor method, which approximates the dipole dipole
interactions at the macrocell level but calculating a dipole-dipole tensor which
is exact if the magnetic moments in each cell are aligned.

dipole:solver = exclusive string [default tensor] Declares the solver to be used
for the dipole calculation. Available options are:

macrocell

tensor

Simulation Control

The following commands control the simulation, including the program, maxi-
mum temperatures, applied field strength etc.

sim:integrator = exclusive string [default llg-heun] Declares the integrator to
be used for the simulation. Available options are:

llg-heun
monte-carlo

llg-midpoint

32

constrained-monte-carlo

hybrid-constrained-monte-carlo

sim:program = exclusive string defines the simulation program to be used.

sim:program = benchmark program which integrates the system for 10,000 time
steps and exits. Used primarily for quick performance comparisons for different
system architectures, processors and during code performance optimisation.

sim:program = time-series program to perform a single time series typically
used for switching calculations, ferromagnetic resonance or to find equilibrium
magnetic configurations. The system is usually simulated with constant tempera-
ture and applied field. The system is first equilibrated for sim:equilibration-time-steps
time steps and is then integrated for sim:time-steps time steps.

sim:program = hysteresis-loop program to simulate a dynamic hysteresis loop

in user defined field range and precision. The system temperature is fixed and

defined by sim:temperature. The system is first equilibrated for sim:equilibration

time-steps time steps at sim:maximum-applied-field-strength applied field. For

normal loops sim:maximume-applied-field-strength should be a saturating field.

After equilibration the system is integrated for sim:loop-time-steps at each field

point. The field increments from +sim:maximum-applied-field-strength to =sim:maximum-appli
-field-strength in steps of sim:applied-field-increment, and data is output after

each field step.

sim:program = static-hysteresis-loop program to perform a hysteresis loop
in the same way as a normal hysteresis loop, but instead of a dynamic loop
the equilibrium condition is found by minimisation of the torque on the sys-
tem. For static loops the temperature must be zero otherwise the torque is
always finite. At each field increment the system is integrated until either the
maximum torque for any one spin is less than the tolerance value (10~6 T),
or if sim:loop-time-steps is reached. Generally static loops are computationally
efficient, and so sim:loop-time-steps can be large, as many integration steps are
only required during switching, i.e. near the coercivity.

sim:program = curie-temperature Simulates a temperature loop to determine

the Curie temperature of the system. The temperature of the system is increased
stepwise, starting at sim:minimum temperature and ending at sim:maximum-

33

temperature in steps of sim:temperature-increment. At each temperature the
system is first equilibrated for sim:equilibration-steps time steps and then a
statistical average is taken over sim:loop-time-steps. In general the Monte Carlo
integrator is the optimal method for determining the Curie temperature, and typi-
cally a few thousand steps is sufficient to equilibrate the system. To determine the
Curie temperature it is best to plot the mean magnetization length at each tem-
perature, which can be specified using the output:mean-magnetisation-length
keyword. Typically the temperature dependent magnetization can be fitted using

the function 5
m(T) = (> 8)= (1 - %) (6.1)

i

where T is the temperature, T¢ is the Curie temperature, and 8 ~ 0.34 is the
critical exponent.

sim:program = field-cooling

sim:program = temperature-pulse

sim:program = cmc-anisotropy

sim:enable-dipole-fields flag enables calculation of the demagnetising field.
sim:enable-fmr-field

sim:enable-fast-dipole-fields Bool default false Enables fast calculation of the
demag field by pre calculation of the interaction matrix.

sim:dipole-field-update-rate Integer default 1000 Number of timesteps be-
tween recalculation of the demag field. Default value is suitable for slow calcu-
lations, fast dynamics will generally require much faster update rates.
sim:time-step

sim:total-time-steps

sim:loop-time-steps

34

sim:time-steps-increment
sim:equilibration-time-steps
sim:simulation-cycles
sim:maximum-temperature
sim:minimum-temperature
sim:equilibration-temperature
sim:temperature
sim:temperature-increment
sim:cooling-time

sim:laser-pulse-temporal-profile square two-temperature double-pulse-two-tem-
perature double-pulse-square

sim:laser-pulse-time

sim:laser-pulse-power
sim:second-laser-pulse-time
sim:second-laser-pulse-power
sim:second-laser-pulse-maximum-temperature
sim:second-laser-pulse-delay-time
sim:two-temperature-heat-sink-coupling

sim:two-temperature-electron-heat-capacity

35

sim:two-temperature-phonon-heat-capacity
sim:two-temperature-electron-phonon-coupling
sim:cooling-function exponential gaussian double-gaussian linear
sim:applied-field-strength
sim:maximum-applied-field-strength
sim:equilibration-applied-field-strength
sim:applied-field-strength-increment
sim:applied-field-angle-theta

sim:applied-field-angle-phi

sim:applied-field-unit-vector

sim:demagnetisation-factor =float vector [default (000)] vector describing the
components of the demagnetising factor from a macroscopic sample. By default
this is disabled, and specifying a demagnetisation factor adds an effective field,
such that the total field is given by:

Hiot = Hext + Hing — M- Ny

where M is the magnetisation of the sample and N is the demagnetisation factor
of the macroscopic sample. The components of the demagnetisation factor must
sum to 1. In general the demagnetisation factor should be used without the
dipolar field, as this results in counting the demagnetising effects twice. However,
the possibility of using both is not prevented by the code.

sim:integrator-random-seed Integer [default 12345] Sets a seed for the psuedo
random number generator. Simulations use a predictable sequence of psuedo
random numbers to give repeatable results for the same simulation. The seed
determines the actual sequence of numbers and is used to give a different
realisation of the same simulation which is useful for determining statistical
properties of the system.

36

sim:constraint-rotation-update

sim:constraint-angle-theta = float (default 0) When a constrained integrator is
used in a normal program, this variable controls the angle of the magnetisation
of the. Whole system from the x-axis [degrees]. In constrained simulations (such
as ¢,c anisotropy) this has no effect.

sim:constraint-angle-theta-minimum float (default 0)
sim:constraint-angle-theta-maximum

sim:constraint-angle-theta-increment = float 0.001-360 (default 5) Incremen-
tal Change of angle of m from z-direction in constrained simulations. Controls the
resolution of

sim:constraint-angle-phi
sim:constraint-angle-phi-minimum
sim:constraint-angle-phi-maximum
sim:constraint-angle-phi-increment
sim:monte-carlo-algorithm

spin-flip

uniform

angle

hinzke-nowak

sim:checkpoint flag [default false] Enables checkpointing of spin configuration
at end of simulation sim:save-checkpoint=end sim:save-checkpoint=continuous
sim:save-checkpoint-rate=1 sim:load-checkpoint=restart sim:load-checkpoint=continue

sim:preconditioning-steps integer [default 0] defines a number of precondi-

tioning steps to thermalise the spins at sim:equilibration-temperature prior to
the main simulation starting. The preconditioner uses a Monte Carlo algorithm

37

to develop a Boltzmann spin distribution prior to the main program starting. The
method works in serial and parallel mode and is especially efficient for materials
with low Gilbert damping. The preconditioning steps are applied after loading a
checkpoint, allowing you to take a low temperature starting state and thermally
equilibrate it.

Data output

The following commands control what data is output to the output file. The
order in which they appear is the order in which they appear in the output file.
Most options output a single column of data, but some output multiple columns,
particularly vector data or parameters related to materials, where one column per
material is output.

output:time-steps outputs the number of time steps (or Monte Carlo steps)
completed during the simulation so far.

output:real-time outputs the simulation time in seconds. The real time is
given by the number of time steps multiplied by sim:time-step (default value is
1.0 x 1015 s, The real time has no meaning for Monte Carlo simulations.

output:temperature outputs the instantaneous system temperature in Kelvin.
output:applied-field-strength outputs the strength of the applied field in Tesla.
For hysteresis simulations the sign of the applied field strength changes along a

fixed axis and is represented in the output by a similar change in sign.

output:applied-field-unit-vector outputs a unit vector in three columns hy, hy,
h indicating the direction of the external applied field.

output:applied-field-alignment outputs the dot product of the net magnetiza-
tion direction of the system with the external applied field direction i - H.

output:material-applied-field-alignment outputs the dot product of the net

magnetization direction of each material defined in the material file with the
external applied field direction [ﬁll . H} [ﬁq2 H][mn H]

38

output:magnetisation outputs the instantaneous magnetization of the system.
The data is output in four columns nig, niy, iz, |m| giving the unit vector direction
of the magnetization and normalized length of the magnetization respectively.
The normalized length of the magnetization |m| = | 3°, 1:S;|/ >- pi is given by the
sum of all moments in the system assuming ferromagnetic alignment of all spins.
Note that the localized spin moments p; are taken into account in the summation.

output:magnetisation-length outputs the instantaneous normalized magneti-
zation length |m| = | >, 11iSi|/ > s, Where the saturation value is defined by
ferromagnetic alignment of all spins in the system. Note that the localized spin
moments p; are taken into account in the summation.

output:mean-magnetisation-length outputs the time-averaged normalized mag-
netization length (|m/|).

output:mean-magnetisation outputs the time-averag