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II. THE ATOMISTIC SPIN MODEL

Magnetism on the atomic scale presents two natural
limits: the discrete limit of continuum micromagnetics
and the classical limit for the quantum mechanical elec-
tron spin. The essential model of atomic scale magnetism
was devised by Heisenberg in 192824 for molecular hy-
drogen. The so-named Heisenberg model describes the
atomic scale exchange interaction with a local moment
theory, considering the interaction between two electron
spins on neighbouring atomic sites. By applying the
Heitler-London approximation25 for the linear combina-
tion of electron orbitals, Heisenberg developed a model
which describes the energy of neighbouring atoms with
spin, given by:

< H >= �J
ij

S̃
i

· S̃
j

(1)

where S̃
i

and S̃
j

are the quantum mechanical spins on
atomic sites i and j respectively, and J

ij

is the interaction
energy arising from the probability of the two electrons
exchanging atomic sites. The quantum mechanical na-
ture of the electron spins leads to quantization of the elec-
tron energy, which for a single spin was demonstrated by
the Stern-Gerlach experiment26. In the above case, how-
ever, the quantum e↵ects are far more complex due to the
coupling of the electronic spin moments. In the limit of
infinite spin angular momentum, the quantisation e↵ects
vanish, and the spin moments have continuous degrees of
freedom. Such spins are said to be classical, leading to
the classical Heisenberg spin model. It should be pointed
out that there is a fundamental assumption within the
Heisenberg model, namely that the electrons are closely
bound to the atomic sites. In general this is not the case
for most magnetic materials, since the magnetic interac-
tions usually arise from unpaired outer electrons, which
in metals are loosely bound. The band theory of fer-
romagnetism proposed by Stoner27 successfully explains
why the usual magnetic atoms possess non-integer spin
moments by describing the exchange splitting of the spin-
up and spin-down energy bands. However, the band the-
ory reveals little about the fundamental magnetic prop-
erties due to its complexity, and so an assumption that
on some, very short, timescale the local moment approx-
imation is valid is not unreasonable, provided that it
is acknowledged that in fact electrons are not confined
to the atomic sites over longer timescales. Collectively
this leads to an e↵ective Heisenberg classical spin model,
where the spins have some non-integer, time-averaged,
value of the spin moment which is assumed constant.
Discussion, Hubbard model

A. The Classical Spin Hamiltonian

The Heisenberg spin model incorporates all the pos-
sible magnetic interactions into a single convenient for-

malism which can be used to investigate a myriad of
magnetic phenomena at the natural atomic scale. The
principal component of the model is the formation of the
spin Hamiltonian, describing the fundamental energetics
of any magnetic system. Such a Hamiltonian is formed
from a summation of contributions, each of which de-
scribes an interaction between an atomic spin moment
and neighbouring moments or external magnetic fields.
The spin Hamiltonian typically takes the form:

H = H
exc

+H
ani

+H
app

(2)

The dominant contribution to the spin Hamiltonian for
the vast majority of magnetic materials comes from the
exchange or Weiss field, which attempts to align the
atomic spin moments. The Weiss field in fact originates
from the quantum mechanical exchange interaction, aris-
ing from the probability of an electron moving from one
atomic site to another. The exchange interaction, as it is
called, leads to very strong alignment of spin moments to
their neighbours in ferromagnetic metals. The total ex-
change energy for each atom, i, is described by the sum
over all neighbouring atomic spin moments:

H
exchange

=
X

i<j

J
ij

S
i

· S
j

(3)

where J
ij

is the exchange interaction between the sites i
and j, S

i

is the local spin moment and S
j

are the spin
moments of neighbouring atoms. The spin moments are
expressed here as unit vectors S

i

= µi/|µi

|. In the sim-
plest case the exchange interaction is single valued, and
the interaction is only between nearest neighbours. In
this case a negative value of J

ij

results in a ferromagnetic
interaction between spins and attempts to align the spins,
while a positive value results in an anti-ferromagnetic
interaction between spins, which attempts to align the
spins anti-parallel. In more complex materials, the ex-
change interaction forms a tensor with components:
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which is capable of describing anisotropic exchange in-
teractions, such as two-ion anisotropy (Oleg) and the
Dzyaloshinskii-Moriya interaction (o↵-diagonal compo-
nents of the exchange tensor). Additionally the exchange
interaction can extend to several atomic spacings, rep-
resenting hundreds of atomic interactions. Such com-
plex interactions generally result from Density Functional
Theory parameterisation of magnetic materials, where
the electronic interactions can extend far away from the
local spin.

After the exchange interaction, the most important pa-
rameter in a magnetic system is generally the magneto-
crystalline anisotropy, namely the preference for spin mo-
ments to align with particular crystallographic axes, aris-
ing from the e↵ect of the local crystal environment on

The ‘spin’ Hamiltonian

Exchange Anisotropy Applied Field
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3

the spin-orbit coupling of the electrons. The anisotropy
of a material determines its long term magnetic stability,
which can result in dynamic behaviour over the timescale
of nanoseconds to millions of years. The simplest form of
anisotropy is single ion uniaxial, where the magnetic mo-
ments prefer to align along a single axis, e, often called
the easy axis. Such an anisotropy exists where the crys-
tal lattice is distorted along a single axis, as in materials
such as hexagonal Cobalt and L1

0

FePt. The uniaxial
single ion anisotropy energy is given by:

Huni

ani

= �k
u

X

i

(S
i

· e)2 (5)

where K
u

is the anisotropy energy per atom. Mate-
rials with a cubic crystal structure, such as Iron and
Nickel, have a di↵erent form of anisotropy known as cu-
bic anisotropy. Cubic anisotropy is a much weaker e↵ect
than in uniaxial anisotropy, and has three principal di-
rections which energetically are easy, hard and very hard
magnetisation directions respectively. This is defined in
terms of the value of the directional cosines of the spin
moment relative to the cartesian axes, such that, to first
order, the anisotropy energy density of a single spin is
given by

Hcub

ani

=
k
c

2

X

i

�
S4

x

+ S4

y

+ S4

z

�
(6)

where K
c

is the cubic anisotropy energy per atom, and
S
x

,S
y

, and S
z

are the x,y, and z components of the spin
moment S

i

respectively.
Most magnetic problems also involve interactions be-

tween the system and external applied fields, H
applied

.
External fields can arise in many ways, for example a
nearby magnetic material, or as an e↵ective field from an
electric current. In all cases the applied field energy is
simply given by:

H
app

= �
X

i

µ
s

S
i

·H
app

. (7)

An important consideration when modeling magnetic
materials is the e↵ect of the de-magnetising or dipolar
field. However, for isolated nanoparticles with spherical
geometries the de-magnetising field is largely isotropic
and much weaker than other contributions, and so can
generally be neglected. This is fortunate as its calculation
is computationally costly. Although the de-magnetising
field arises due to the atomistic magnetic moments, its
e↵ect is not significant over atomic lengthscales, and so
can be safely neglected. For thin films and multi-granular
materials the e↵ect of the demagnetisation field becomes
significant, inducing domain states in su�ciently large
films, or complex inter-grain interactions in the case of
granular systems. For systems where this is important,
the dipolar interactions are calculated with a micromag-
netic approximation, by creating magnetic cells, each
consisting of several atoms. These cells then interact with

the usual dipolar interaction, and its implementation in
the code is described in detail under computational meth-
ods.

A note on magnetic units

The subject of magnetic units is controversial due to
the existence of multiple competing standards and histor-
ical origins. Starting from the atomic level however the
dimensionality of units is relatively transparent. Atomic
moments are usually accounted for in multiples of the
Bohr magneton (µ

B

), the magnetic moment of an isolated
electron, with units of Joules/Tesla. Given a number of
atoms of moment µ in a volume, the moment per unit
volume is in units of J/T/m3, which is identical to the
SI unit of A/m. However, the dimensionality (moment
per unit volume) of the unit A/m is not as transparent
as JT�1m�3, and so the latter form is used herein.

Applied magnetic fields are defined in Tesla, which
comes naturally from the derivative of the Hamiltonian
with respect to the local moment. The unit of Tesla for
applied field is also beneficial for hysteresis loops, since
the area enclosed a typical M-H loop is then given as an
energy density (Joules/m3). A list of key magnetic pa-
rameters and their units are shown in Tab. ??, and a list
of relevant atomic constants and their units are shown in
Tab. ??.

TABLE I. Table of key variables and their units

Varible Symbol Unit
Atomic magnetic moment µ

s

Joules/Tesla [JT�1]
Unit cell size a Angstroms [Å]
Exchange energy J

ij

Joules/link [J]
Anisotropy energy k

u

Joules/atom [J]
Applied Field H Tesla [T]
Temperature T Kelvin [K]
Time t Seconds [s]

TABLE II. Table of key parameters and their values

Parameter Symbol Value
Bohr Magneton µ

B

9.2740 ⇥10�24 JT�1

Gyromagnetic Ratio � 1.76 ⇥1011 T�1s�1

Permeability of Free Space µ
0

4⇡ ⇥ 10�7 T2J�1m3

Boltzmann Constant k
B

1.3807⇥ 10�23 JK�1
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Natural discrete limit of magnetization
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this suggests that the bonding electrons are unpolarized, and
after taking into account the bonding charge the remaining
d-electrons form a well-defined effective localized moment on
the atomic sites.

Magnetic systems are fundamentally quantum mechani-
cal in nature since the electron energy levels are quantized,
the exchange interaction is a purely quantum mechanical
effect, and other important effects such as magnetocrystalline
anisotropy arise from relativistic interactions of electronic
orbitals with the lattice, which are the province of ab initio
models. In addition to these properties at the electronic level,
the properties of magnetic materials are heavily influenced
by thermal effects which are typically difficult to incorporate
into standard density functional theory approaches. Therefore
models of magnetic materials should combine the quantum
mechanical properties with a robust thermodynamic formal-
ism. The simplest model of magnetism using this approach is
the Ising model [1], which allows the atomic moments one of
two allowed states along a fixed quantization axis. Although
useful as a descriptive system, the forced quantization is
equivalent to infinite anisotropy, limiting the applicability of
the Ising model in relation to real materials. In the classical
description the direction of the atomic moment is a continuous
variable in 3D space allowing for finite anisotropies and
dynamic calculations. In some sense the classical spin model is
analogous to Molecular Dynamics, where the energetics of the
system are determined primarily from quantum mechanics, but
the time evolution and thermodynamic properties are treated
classically.

2.1. The classical spin Hamiltonian

The extended Heisenberg spin model encapsulates the essen-
tial physics of a magnetic material at the atomic level, where
the energetics of a system of interacting atomic moments is
given by a spin Hamiltonian (which neglects non-magnetic
effects such the as the Coulomb term). The spin Hamiltonian
H typically has the form:

H =Hexc +Hani +Happ (1)

denoting terms for the exchange interaction, magnetic
anisotropy, and externally applied magnetic fields respectively.

The dominant term in the spin Hamiltonian is the Heisen-
berg exchange energy, which arises due to the symmetry of the
electron wavefunction and the Pauli exclusion principle [60]
which governs the orientation of electronic spins in over-
lapping electron orbitals. Due to its electrostatic origin, the
associated energies of the exchange interaction are around
1–2 eV, which is typically up to 1000 times larger than the
next largest contribution and gives rise to magnetic ordering
temperatures in the range 300–1300 K. The exchange energy
for a system of interacting atomic moments is given by the
expression

Hexc = �
X

i 6= j

Ji j Si · S j (2)

where Ji j is the exchange interaction between atomic sites
i and j , Si is a unit vector denoting the local spin moment
direction and S j is the spin moment direction of neighbouring

atoms. The unit vectors are taken from the actual atomic mo-
ment µs and given by Si = µs/|µs|. It is important to note here
the significance of the sign of Ji j . For ferromagnetic materials
where neighbouring spins align in parallel, Ji j > 0, and for
antiferromagnetic materials where the spins prefer to align
anti-parallel Ji j < 0. Due to the strong distance dependence
of the exchange interaction, the sum in equation (2) is often
truncated to include nearest neighbours only. This significantly
reduces the computational effort while being a good approxi-
mation for many materials of interest. In reality the exchange
interaction can extend to several atomic spacings [29, 30],
representing hundreds of pairwise interactions.

In the simplest case the exchange interaction Ji j is
isotropic, meaning that the exchange energy of two spins
depends only on their relative orientation, not their direction.
In more complex materials, the exchange interaction forms a
tensor with components:

JM
i j =

"Jxx Jxy Jxz
Jyx Jyy Jyz
Jzx Jzy Jzz

#

, (3)

which is capable of describing anisotropic exchange interac-
tions, such as two-ion anisotropy [29] and the Dzyaloshinskii–
Moriya interaction (off-diagonal components of the exchange
tensor). In the case of tensorial exchange HM

exc, the exchange
energy is given by the product:

HM
exc = �

X

i 6= j

⇥
Si

x Si
y Si

z
⇤
"Jxx Jxy Jxz

Jyx Jyy Jyz
Jzx Jzy Jzz

# 2

64
S j

x

S j
y

S j
z

3

75 . (4)

Obtaining the components of the exchange tensor may be
done phenomenologically, or via ab initio methods such as
the relativistic torque method [62–65] or the spin-cluster
expansion technique [30, 66–68]. The above expressions
for the exchange energy also exclude higher-order exchange
interactions such as three-spin and four-spin terms. In most
materials the higher-order exchange terms are significantly
smaller than the leading term and can safely be neglected.

While the exchange energy gives rise to magnetic ordering
at the atomic level, the thermal stability of a magnetic material
is dominated by the magnetic anisotropy, or preference for the
atomic moments to align along a preferred spatial direction.
There are several physical effects which give rise to anisotropy,
but the most important is the magnetocrystalline anisotropy
(namely the preference for spin moments to align with particu-
lar crystallographic axes) arising from the interaction of atomic
electron orbitals with the local crystal environment [69, 70].

The simplest form of anisotropy is of the single-ion
uniaxial type, where the magnetic moments prefer to align
along a single axis, e, often called the easy axis and is an
interaction confined to the local moment. Uniaxial anisotropy
is most commonly found in particles with elongated shape
(shape anisotropy), or where the crystal lattice is distorted
along a single axis as in materials such as hexagonal Cobalt and
L10 ordered FePt. The uniaxial single-ion anisotropy energy
is given by the expression:

Huni
ani = �ku

X

i

(Si · e)2 (5)
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III. SYSTEM PARAMETERIZATION AND
GENERATION

Unlike micromagnetic simulations where the magnetic
system can be partitioned using either a finite di↵er-
ence or finite element discretization, atomistic simula-
tions generally require some apriori knowledge of atomic
positions. Most simple magnetic materials such as Fe,
Co or Ni form regular crystals, while more complex sys-
tems such as oxides, antiferromagnets and Heusler alloys
possess correspondingly complex atomic structures. For
ferromagnetic metals, the details of atomic positions are
generally less important due to the strong parallel ori-
entation of moments, and so they can often be (but not
always) represented using a simple cubic discretization.
In contrast, the properties of ferrimagnetic and antifer-
romagnetic materials are inherently tied to the atomic
positions due to frustration and exchange interactions,
and so simulation of these materials must incorporate
details of the atomic structure.

In addition to the atomic structure of the material, it
is also necessary to parametrize the spin Hamiltonian,
principally including exchange and anisotropy parame-
ters but also possibly with other terms. There are gen-
erally two ways in which this may be done: firstly using
experimentally determined properties or secondly with a
multiscale approach using density functional theory cal-
culations as input to the spin model.

A number of studies have determined atomic mag-
netic properties from first principles calculations by di-
rect mapping onto a spin model, including the prin-
ciple magnetic elements Co,Ni and Fe28, metallic al-
loys including FePt21, IrMn20, oxides29 and spin glasses
[ref CuMn]. Such calculations give detailed insight into
microscopic magnetic properties, including atomic mo-
ments, long-ranged exchange interactions, magnetocrys-
talline anisotropies (including surface and two-ion inter-
actions) and other details not readily available from phe-
nomenological theories. Combined with atomistic mod-
els it is possible to determine macroscopic properties
such as the Curie temperature, temperature dependent
anisotropies, and magnetic ground states, often in excel-
lent agreement with experiment. However, the compu-
tational complexity of DFT calculations also means that
the systems which can be simulated with this multi scale
approach are often limited to small clusters, perfect bulk
systems and 2D periodic systems, while real materials of
course often contain a plethora of defects disrupting the
long range order. Nevertheless, some studies have also
attempted to investigate the e↵ects of disorder, but so
far without atomistic parametrization[ref].

Atomistic parameters from macroscopic properties

The alternative approach to multiscale
atomistic/density-functional-theory simulations is
to derive the parameters from experimentally deter-

mined values. This has the advantage of speed and
lower complexity, whilst foregoing microscopic details
of the exchange interactions or anisotropies. Another
key advantage of generic parameters is the possibility of
parametric studies, where parameters are varied explic-
itly to determine their importance for the macroscopic
properties of the system, such as has been done for
studies of surface anisotropy8 and exchange bias5.

Unlike micromagnetics simulations, the robust ther-
modynamic approach of the atomistic model means that
all parameters must be determined for zero temperature.
The spin fluctuations then determine the intrinsic tem-
perature dependence of the e↵ective parameters which
are usually put into micromagnetic simulations as param-
eters. Fortunately determination of the atomic moments,
exchange constants and anisotropies from experimental
values is relatively straightforward for most systems.

Atomic spin moment

The atomic spin moment µ
s

is related to the saturation
magnetization simply by:

µ
s

=
M

s

a3

n
at

(8)

where M
s

is the saturation magnetization at 0K in
JT�1m�3 (A/m), a is the unit cell size (m), and n

at

is the number of atoms per unit cell. We also note the
usual convention of expressing atomic moments in mul-
tiples or fractions of µ

B

owing to their electronic origin.
Taking Iron as an example, the zero temperature satura-
tion is xxx[ref], unit cell size of a = 2.501 Å, this gives
an atomic moment of 1.44 µ

B

/atom.

Exchange energy

For a generic atomistic model with z nearest neighbor
interactions, the exchange constant is given conveniently
by the mean-field expression:

J
ij

=
3k

B

T
c

✏z
(9)

where k
B

is the Boltzmann constant and T
c

is the Curie
temperature z is the number of nearest neighbors. ✏ is
a correction factor from the usual mean-field expression
which arises due to spin waves in the 3D Heisenberg
model30 and is ⇠ 0.86. Because of this ✏ is also crys-
tal structure and coordination number dependent, and
so the calculated T

c

will slightly vary according to the
specifics of the system. For Cobalt with a T

c

of 1388K
and assuming a hexagonal crystal structure with z = 12,
this gives a nearest neighbor J

ij

= 5.57⇥ 10�21J/link.

D. A. Garanin, Physical Review B 53, 11593 (1996)

Mean field approximation with correction factor for spin waves

Exchange energy defines the Curie / Néel  
temperature of the material
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the spin-orbit coupling of the electrons. The anisotropy
of a material determines its long term magnetic stability,
which can result in dynamic behaviour over the timescale
of nanoseconds to millions of years. The simplest form of
anisotropy is single ion uniaxial, where the magnetic mo-
ments prefer to align along a single axis, e, often called
the easy axis. Such an anisotropy exists where the crys-
tal lattice is distorted along a single axis, as in materials
such as hexagonal Cobalt and L1

0

FePt. The uniaxial
single ion anisotropy energy is given by:

Huni

ani

= �k
u

X

i

(S
i

· e)2 (5)

where K
u

is the anisotropy energy per atom. Mate-
rials with a cubic crystal structure, such as Iron and
Nickel, have a di↵erent form of anisotropy known as cu-
bic anisotropy. Cubic anisotropy is a much weaker e↵ect
than in uniaxial anisotropy, and has three principal di-
rections which energetically are easy, hard and very hard
magnetisation directions respectively. This is defined in
terms of the value of the directional cosines of the spin
moment relative to the cartesian axes, such that, to first
order, the anisotropy energy density of a single spin is
given by

Hcub

ani

=
k
c

2

X

i

�
S4

x

+ S4

y

+ S4

z

�
(6)

where K
c

is the cubic anisotropy energy per atom, and
S
x

,S
y

, and S
z

are the x,y, and z components of the spin
moment S

i

respectively.
Most magnetic problems also involve interactions be-

tween the system and external applied fields, H
applied

.
External fields can arise in many ways, for example a
nearby magnetic material, or as an e↵ective field from an
electric current. In all cases the applied field energy is
simply given by:

H
app

= �
X

i

µ
s

S
i

·H
app

. (7)

An important consideration when modeling magnetic
materials is the e↵ect of the de-magnetising or dipolar
field. However, for isolated nanoparticles with spherical
geometries the de-magnetising field is largely isotropic
and much weaker than other contributions, and so can
generally be neglected. This is fortunate as its calculation
is computationally costly. Although the de-magnetising
field arises due to the atomistic magnetic moments, its
e↵ect is not significant over atomic lengthscales, and so
can be safely neglected. For thin films and multi-granular
materials the e↵ect of the demagnetisation field becomes
significant, inducing domain states in su�ciently large
films, or complex inter-grain interactions in the case of
granular systems. For systems where this is important,
the dipolar interactions are calculated with a micromag-
netic approximation, by creating magnetic cells, each
consisting of several atoms. These cells then interact with

the usual dipolar interaction, and its implementation in
the code is described in detail under computational meth-
ods.

A note on magnetic units

The subject of magnetic units is controversial due to
the existence of multiple competing standards and histor-
ical origins. Starting from the atomic level however the
dimensionality of units is relatively transparent. Atomic
moments are usually accounted for in multiples of the
Bohr magneton (µ

B

), the magnetic moment of an isolated
electron, with units of Joules/Tesla. Given a number of
atoms of moment µ in a volume, the moment per unit
volume is in units of J/T/m3, which is identical to the
SI unit of A/m. However, the dimensionality (moment
per unit volume) of the unit A/m is not as transparent
as JT�1m�3, and so the latter form is used herein.

Applied magnetic fields are defined in Tesla, which
comes naturally from the derivative of the Hamiltonian
with respect to the local moment. The unit of Tesla for
applied field is also beneficial for hysteresis loops, since
the area enclosed a typical M-H loop is then given as an
energy density (Joules/m3). A list of key magnetic pa-
rameters and their units are shown in Tab. ??, and a list
of relevant atomic constants and their units are shown in
Tab. ??.

TABLE I. Table of key variables and their units

Varible Symbol Unit
Atomic magnetic moment µ

s

Joules/Tesla [JT�1]
Unit cell size a Angstroms [Å]
Exchange energy J

ij

Joules/link [J]
Anisotropy energy k

u

Joules/atom [J]
Applied Field H Tesla [T]
Temperature T Kelvin [K]
Time t Seconds [s]

TABLE II. Table of key parameters and their values

Parameter Symbol Value
Bohr Magneton µ

B

9.2740 ⇥10�24 JT�1

Gyromagnetic Ratio � 1.76 ⇥1011 T�1s�1

Permeability of Free Space µ
0

4⇡ ⇥ 10�7 T2J�1m3

Boltzmann Constant k
B

1.3807⇥ 10�23 JK�1
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where ku is the anisotropy energy per atom. Materials with
a cubic crystal structure, such as iron and nickel, have a
different form of anisotropy known as cubic anisotropy. Cubic
anisotropy is generally much weaker than uniaxial anisotropy,
and has three principal directions which energetically are
easy, hard and very hard magnetization directions respectively.
Cubic anisotropy is described by the expression:

Hcub
ani = kc

2

X

i

⇣
S4

x + S4
y + S4

z

⌘
(6)

where kc is the cubic anisotropy energy per atom, and Sx , Sy ,
and Sz are the x , y, and z components of the spin moment S
respectively.

Most magnetic problems also involve interactions be-
tween the system and external applied fields, denoted as Happ.
External fields can arise in many ways, for example a nearby
magnetic material, or as an effective field from an electric
current. In all cases the applied field energy is simply given by:

Happ = �
X

i

µsSi · Happ. (7)

2.2. A note on magnetic units

The subject of magnetic units is controversial due to the
existence of multiple competing standards and historical ori-
gins [60]. Starting from the atomic level however, the dimen-
sionality of units is relatively transparent. Atomic moments
are usually accounted for in multiples of the Bohr magneton
(µB), the magnetic moment of an isolated electron, with units
of J T�1. Given a number of atoms of moment µs in a volume,
the moment per unit volume is naturally in units of J T m�3,
which is identical to the SI unit of A m�1. However, the
dimensionality (moment per unit volume) of the unit A m�1

is not as obvious as J T�1m�3, and so the latter form is used
herein.

Applied magnetic fields are hence defined in Tesla, which
comes naturally from the derivative of the spin Hamiltonian
with respect to the local moment. The unit of Tesla for applied
field is also beneficial for hysteresis loops, since the area
enclosed a typical M–H loop is then given as an energy density
(J m�3). A list of key magnetic parameters and variables and
their units are shown in table 1.

3. System parameterization and generation

Unlike micromagnetic simulations where the magnetic system
can be partitioned using either a finite difference or finite
element discretization, atomistic simulations generally require
some a priori knowledge of atomic positions. Most simple
magnetic materials such as Fe, Co or Ni form regular crystals,
while more complex systems such as oxides, antiferromagnets
and Heusler alloys possess correspondingly complex atomic
structures. For ferromagnetic metals, the details of atomic
positions are generally less important due to the strong parallel
orientation of moments, and so they can often (but not always)
be represented using a simple cubic discretization. In contrast,
the properties of ferrimagnetic and antiferromagnetic materials

Table 1. Table of key variables and their units.

Variable Symbol Unit

Atomic magnetic moment µs Joules/Tesla (J T�1)

Unit cell size a Angstroms (Å)
Exchange energy Ji j Joules/link (J)
Anisotropy energy ku Joules/atom (J)
Applied field H Tesla (T)
Temperature T Kelvin (K)
Time t Seconds (s)

Parameter Symbol Value

Bohr magneton µB 9.2740 ⇥ 10�24 J T�1

Gyromagnetic ratio � 1.76 ⇥ 1011 T�1 s�1

Permeability of free space µ0 4⇡ ⇥ 10�7 T2 J�1 m3

Boltzmann constant kB 1.3807 ⇥ 10�23 J K�1

are inherently tied to the atomic positions due to frustration
and exchange interactions, and so simulation of these materials
must incorporate details of the atomic structure.

In addition to the atomic structure of the material, it is also
necessary to parameterize the terms of the spin Hamiltonian
given by equation (1), principally including exchange and
anisotropy values but also with other terms. There are generally
two ways in which this may be done: using experimentally
determined properties or with a multiscale approach using
ab initio density functional theory calculations as input to the
spin model.

3.1. Atomistic parameters from ab initio calculations

Ab initio density functional theory (DFT) calculations utilize
the Hohenberg–Kohn–Sham theory [71, 72] which states that
the total energy E of a system can be written solely in terms the
electron density, ⇢. Thus, if the electron density is known then
the physical properties of the system can be found. In practice,
the both electron density and the spin density are used as
fundamental quantities in the total energy expression for spin-
polarized systems [73]. In many implementations DFT-based
methods only consider the outer electrons of a system, since
the inner electrons play a minimal role in the bonding and also
partially screen the effect of the nuclear core. These effects
are approximated by a pseudopotential which determines the
potential felt by the valence electrons. In all-electron methods,
however, the core electron density is also relaxed. By energy
minimization, DFT enables the calculation of a wide range
of properties, including lattice constants, and in the case of
magnetic materials localized spin moments, magnetic ground
state and the effective magnetocrystalline anisotropy. Standard
software packages such as VASP [74], CASTEP [75, 76] and
SIESTA [77] make such calculations readily accessible. At
present determining site resolved properties such as anisotropy
constants and pairwise exchange interactions is more involved
and requires ab initio Green’s functions techniques such as
the fully relativistic Korringa–Kohn–Rostoker method [78,
79] or the LMTO method [80, 81] in conjunction with the
magnetic force theorem [62]. An alternative approach for
the calculation of exchange parameters is the utilization

4

Happ
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Beitrag zur Theorie  des  F e r r o m a g n e t i s m u s  D. 
Von Ernst Ising in Hamburg. 

(Eingegangen am 9. Dezember 1924.) 
Es wird im wesentlichen das thermische Verhalten eines linearen, aus Elementar- 
magneten bestehendea KSrpers untersueht, wobei im Gegensatz zur Weissschen 
Theorie des Ferromagaetismus keia molekulares Feld, somlern nur eine (nicht 
magnetisehe) Wechse[wirkung benachbarter Elemcatarmagnete aagenommeu wird. 
Es wird gezeigt, dull tin sotehes Modell noch keine ferromagnetisehen Eigenschaften 

hcsitzt und diese Aussage auch auf das dreidimensionate )[odetl ausgedehnt. 

1. A n n a h m e n .  Die Erklarung,  die P. W e i s s  ~) ftir den Ferro-  
magneti~mus geg'eben hat, is t  zwar formal befriedigend, doch Ial]t sie 
besanders die Frage nach einer physikalischen Erklarung der Hypothese 
des molekularen Fehles o[fen. Nach dieser Theorie wirkt  au~ jeden 
E]ementarmagneten, abgesehen yon dem ~iul~eren 3[agnetfeld, ein inneres 
Fehl, das der ieweiligenMagne~isierungsinteasiti~t proportional ist. Es lieg't 
nahe. fiir die Wirkungen der einzelnen Elemente ( ~  Elementarmagnete) 
elektrische Dipolwirkungen anzuset, zen. Dann ergiiben sieh aber durch 
Summation der sehr langsam abnehmenden Dipolfelder sehr betrachtliche 
elektrische Feldst~rken, die dureh die Leitf~higkeit  des Materials zerstSrt  
wCirden. Im Gegensatz zu P. W e i s s  nehmen wir  daher an, daft die 
Kr~ifte, die die Elemente atdeinander ausiiben, mit tier Entfernung raseh 
abklingen, so dal3 in erster N~herung sich nur benaehbarte Atome be- 
einflussen. 

Zweitens setzen wir  an, dal~ die Elemente nur wenige der Kr i s ta l l -  
, t r uk tu r  entsprechende, energetiseh ausgezeichnete Orientierungen ein- 
nehmen. Infolge der W~rmebeweg'ung gehen die Elemente aus einer 
mggliehen Lage in eine andere tiber. W i r  setzen an. dal~ die inhere 
Energie am kleins~en ist, wenn alle Elemente gleiehgerichtet  sind. Diese 
Annahmen sind im wesentliehen zuerst  yon W. L e n z  s) aufgestell t  und 
n~her begrtindet worden. 

2. D i e  e i n f a c h e  l i n e a r e  K e t t e .  Die gemaehtenVoraussetzungen 
wollen M r  aM ein miiglichst einfaches Modell anwenden. W i t  bereehnen 
das mittlere 3~oment $ e i n e s  l inearen 3lagneten, bestehend aus n Elemen~en. 
.ledes dieser n Elemente soll  nur die zwei Stellungen einnehmen ktinnen, 

1) Auszug aus der Hamburger Dissertation. 
'~) P. Weiss ,  Journ. de phys. (4) 6, 661, 1907, und Phys. ZS. 9, 358. 1908. 
:~) W. Lenz,  Phys. ZS. 21, 613, [920. 
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this suggests that the bonding electrons are unpolarized, and
after taking into account the bonding charge the remaining
d-electrons form a well-defined effective localized moment on
the atomic sites.

Magnetic systems are fundamentally quantum mechani-
cal in nature since the electron energy levels are quantized,
the exchange interaction is a purely quantum mechanical
effect, and other important effects such as magnetocrystalline
anisotropy arise from relativistic interactions of electronic
orbitals with the lattice, which are the province of ab initio
models. In addition to these properties at the electronic level,
the properties of magnetic materials are heavily influenced
by thermal effects which are typically difficult to incorporate
into standard density functional theory approaches. Therefore
models of magnetic materials should combine the quantum
mechanical properties with a robust thermodynamic formal-
ism. The simplest model of magnetism using this approach is
the Ising model [1], which allows the atomic moments one of
two allowed states along a fixed quantization axis. Although
useful as a descriptive system, the forced quantization is
equivalent to infinite anisotropy, limiting the applicability of
the Ising model in relation to real materials. In the classical
description the direction of the atomic moment is a continuous
variable in 3D space allowing for finite anisotropies and
dynamic calculations. In some sense the classical spin model is
analogous to Molecular Dynamics, where the energetics of the
system are determined primarily from quantum mechanics, but
the time evolution and thermodynamic properties are treated
classically.

2.1. The classical spin Hamiltonian

The extended Heisenberg spin model encapsulates the essen-
tial physics of a magnetic material at the atomic level, where
the energetics of a system of interacting atomic moments is
given by a spin Hamiltonian (which neglects non-magnetic
effects such the as the Coulomb term). The spin Hamiltonian
H typically has the form:

H =Hexc +Hani +Happ (1)

denoting terms for the exchange interaction, magnetic
anisotropy, and externally applied magnetic fields respectively.

The dominant term in the spin Hamiltonian is the Heisen-
berg exchange energy, which arises due to the symmetry of the
electron wavefunction and the Pauli exclusion principle [60]
which governs the orientation of electronic spins in over-
lapping electron orbitals. Due to its electrostatic origin, the
associated energies of the exchange interaction are around
1–2 eV, which is typically up to 1000 times larger than the
next largest contribution and gives rise to magnetic ordering
temperatures in the range 300–1300 K. The exchange energy
for a system of interacting atomic moments is given by the
expression

Hexc = �
X

i 6= j

Ji j Si · S j (2)

where Ji j is the exchange interaction between atomic sites
i and j , Si is a unit vector denoting the local spin moment
direction and S j is the spin moment direction of neighbouring

atoms. The unit vectors are taken from the actual atomic mo-
ment µs and given by Si = µs/|µs|. It is important to note here
the significance of the sign of Ji j . For ferromagnetic materials
where neighbouring spins align in parallel, Ji j > 0, and for
antiferromagnetic materials where the spins prefer to align
anti-parallel Ji j < 0. Due to the strong distance dependence
of the exchange interaction, the sum in equation (2) is often
truncated to include nearest neighbours only. This significantly
reduces the computational effort while being a good approxi-
mation for many materials of interest. In reality the exchange
interaction can extend to several atomic spacings [29, 30],
representing hundreds of pairwise interactions.

In the simplest case the exchange interaction Ji j is
isotropic, meaning that the exchange energy of two spins
depends only on their relative orientation, not their direction.
In more complex materials, the exchange interaction forms a
tensor with components:

JM
i j =

"Jxx Jxy Jxz
Jyx Jyy Jyz
Jzx Jzy Jzz

#

, (3)

which is capable of describing anisotropic exchange interac-
tions, such as two-ion anisotropy [29] and the Dzyaloshinskii–
Moriya interaction (off-diagonal components of the exchange
tensor). In the case of tensorial exchange HM

exc, the exchange
energy is given by the product:

HM
exc = �

X

i 6= j

⇥
Si

x Si
y Si

z
⇤
"Jxx Jxy Jxz
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S j

x

S j
y

S j
z

3

75 . (4)

Obtaining the components of the exchange tensor may be
done phenomenologically, or via ab initio methods such as
the relativistic torque method [62–65] or the spin-cluster
expansion technique [30, 66–68]. The above expressions
for the exchange energy also exclude higher-order exchange
interactions such as three-spin and four-spin terms. In most
materials the higher-order exchange terms are significantly
smaller than the leading term and can safely be neglected.

While the exchange energy gives rise to magnetic ordering
at the atomic level, the thermal stability of a magnetic material
is dominated by the magnetic anisotropy, or preference for the
atomic moments to align along a preferred spatial direction.
There are several physical effects which give rise to anisotropy,
but the most important is the magnetocrystalline anisotropy
(namely the preference for spin moments to align with particu-
lar crystallographic axes) arising from the interaction of atomic
electron orbitals with the local crystal environment [69, 70].

The simplest form of anisotropy is of the single-ion
uniaxial type, where the magnetic moments prefer to align
along a single axis, e, often called the easy axis and is an
interaction confined to the local moment. Uniaxial anisotropy
is most commonly found in particles with elongated shape
(shape anisotropy), or where the crystal lattice is distorted
along a single axis as in materials such as hexagonal Cobalt and
L10 ordered FePt. The uniaxial single-ion anisotropy energy
is given by the expression:

Huni
ani = �ku

X

i

(Si · e)2 (5)
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Figure 3. Schematic showing the three principal Monte Carlo
moves: (a) spin flip; (b) Gaussian; and (c) random.

requires that the transition probability between two states is
invariant, explicitly P(Si ! S0

i ) = P(S0
i ! Si ). From equa-

tion (22) reversibility is obvious since the probability of a
spin change depends only on the initial and final energy.
Ergodicity is easy to satisfy by moving the selected spin
to a random position on the unit sphere, however this has
an undesirable consequence at low temperatures since large
deviations of spins from the collinear direction are highly
improbable due to the strength of the exchange interaction.
Thus at low temperatures a series of trial moves on the unit
sphere will lead to most moves being rejected. Ideally a move
acceptance rate of around 50% is desired, since very high and
very low rates require significantly more Monte Carlo steps to
reach a state representative of true thermal equilibrium.

One of the most efficient Monte Carlo algorithms for clas-
sical spin models was developed by Hinzke and Nowak [123],
involving a combinational approach using a mixture of dif-
ferent trial moves. The principal advantage of this method
is the efficient sampling of all available phase space while
maintaining a reasonable trial move acceptance rate. The
Hinzke–Nowak method utilizes three distinct types of move:
spin flip, Gaussian and random, as illustrated schematically in
figure 3.

The spin flip move simply reverses the direction of the
spin such that S0

i = �Si to explicitly allow the nucleation of a
switching event. The spin flip move is identical to a move in
Ising spin models. It should be noted that spin flip moves do not
by themselves satisfy ergodicity in the classical spin model,
since states perpendicular to the initial spin direction are
inaccessible. However, when used in combination with other
ergodic trial moves this is quite permissible. The Gaussian trial
move takes the initial spin direction and moves the spin to a
point on the unit sphere in the vicinity of the initial position
according to the expression

S0
i = Si + �g0

|Si + �g0| (23)

where 0 is a Gaussian distributed random number and �g is the
width of a cone around the initial spin Si . After generating the
trial position S0

i the position is normalized to yield a spin of unit
length. The choice of a Gaussian distribution is deliberate since
after normalization the trial moves have a uniform sampling
over the cone. The width of the cone is generally chosen to be
temperature dependent and of the form

�g = 2
25

✓
kBT
µB

◆1/5
. (24)

Figure 4. Visualization of Monte Carlo sampling on the unit sphere
for (a) random and (b) Gaussian sampling algorithms at T = 10 K.
The dots indicate the trial moves. The random algorithm shows a
uniform distribution on the unit sphere, and no preferential biasing
along the axes. The Gaussian trial moves are clustered around the
initial spin position, along the z-axis.

The Gaussian trial move thus favours small angular changes
in the spin direction at low temperatures, giving a good
acceptance probability for most temperatures.

The final random trial move picks a random point on the
unit sphere according to

S0
i = 0

|0| (25)

which ensures ergodicity for the complete algorithm and
ensures efficient sampling of the phase space at high tem-
peratures. For each trial step one of these three trial moves is
picked randomly, which in general leads to good algorithmic
properties.

To verify that the random sampling and Gaussian trial
moves give the expected behaviour, a plot of the calculated
trial moves on the unit sphere for the different algorithms is
shown in figure 4. The important points are that the random
trial move is uniform on the unit sphere, and that the Gaussian
trial move is close to the initial spin direction, along the z-axis
in this case.

At this point it is worthwhile considering the relative
efficiencies of Monte Carlo and spin dynamics for calcu-
lating equilibrium properties. Figure 5 shows the simulated
temperature-dependent magnetization for a test system using
both LLG spin dynamics and Monte Carlo methods. Agree-
ment between the two methods is good, but the spin dynamics
simulation takes around twenty times longer to compute due to
the requirements of a low time step and slower convergence to
equilibrium. However, Monte Carlo algorithms are notoriously
difficult to parallelize, and so for larger systems LLG spin
dynamic simulations are generally more efficient than Monte
Carlo methods.

5. Test simulations

Having outlined the important theoretical and computational
methods for the atomistic simulation of magnetic materials,
we now proceed to detail the tests we have refined to ensure
the correct implementation of the main components of the
model. Such tests are particularly helpful to those wishing to
implement these methods. Similar tests developed for micro-
magnetic packages [124] have proven an essential benchmark
for the implementation of improved algorithms and codes with
different capabilities but the same core functionality.
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Anisotropy energy

The atomistic magnetocrystalline anisotropy k
u

is de-
rived from the macroscopic anisotropy constant K

u

by
the expression:

k
u

=
K

u

a3

n
at

(10)

where K
u

in given in J/m3. In addition to the atom-
istic parameters, it is also worth noting the analogous
expressions for the anisotropy field H

a

for a single do-
main particle:

H
a

=
2K

u

M
s

=
2k

u

µ
s

(11)

where symbols have their usual meaning.

Temperature dependent Hc?

Applying the preceding operations, parameters for the
key ferromagnetic elements are given in Tab. III.

Ferrimagnets and antiferromagnets

In the case of ferrimagnets and anti-ferromagnets the
above methods for anisotropy and moment determina-
tion do not work due to the lack of macroscopic measure-
ments, although the estimated exchange energies apply
equally well to the Néel temperature provided no mag-
netic frustration (due to lattice symmetry) is present.
In general, other theoretical calculations or formalisms
are required to determine parameters, such as mean-field
approaches1 or density functional theory calculations20.

Atomistic System Generation

Besides providing a comprehensive collection of meth-
ods for the simulation of magnetic materials, another key
component of the vampire software package is the abil-
ity to generate and model a wide variety of systems, in-
cluding single crystals, thin films, multilayers, nanopar-
ticles, core-shell systems and granular films. In addition
to these structural parameters each system may comprise
several di↵erent materials, each with a distinct set of ma-
terial properties such as exchange, anisotropy and mag-
netic moments. This naturally allows the simulation of
alloys at the atomic level and atomistic details such as
interface roughness and intermixing. In addition to the
built-in system generation, vampire can also import any
arbitrary set of atomic positions and interactions allow-
ing to to deal with almost any kind of magnetic structure.
However in the following we shall restrict ourselves to the
generation of a generic system with nearest neighbor in-
teractions only.

The first step is to generate a crystal lattice of the
desired type and dimensions su�ciently large to incorpo-
rate the complete system. vampire uses the unit cell as
the essential building block of the atomic structure, since
the exchange interactions of atoms between neighboring
unit cells are known before the structure is generated.
The global crystal is generated by replicating the basic
unit cell on a grid in x,y and z.
This bare crystal structure is then cut into the de-

sired geometry, for example a single nanoparticle, voronoi
granular structure, or a user defined 2D geometry by
removing atoms from the complete generated crystal.
Atoms within this geometry are then assigned to one
or more materials as desired, generating the complete
atomic system.
The final step is determining the exchange interactions

for all atoms in the defined system. Since each cell on the
grid contains a fixed number of atoms, and the exchange
interactions of those atoms with other neighboring cells
is known relative to the local cell, the interaction list is
trivial to generate. For computational e�ciency the final
interaction list is then stored as a linked list, completing
the setup of the atomistic system ready for integration.
parallel implementation.

IV. INTEGRATION METHODS

Although the spin Hamiltonian describes the energet-
ics of the magnetic system, it provides no information
regarding its time evolution, thermal fluctuations, or the
ability to determine the ground state for the system. In
the following the commonly utilized integration methods
for atomistic spin models are introduced.

Spin Dynamics

The first understanding of spin dynamics came from
ferromagnetic resonance experiments, where the time de-
pendent behavior of a magnetic materials is described
by the equation derived by Landau and Lifshitz31. The
phenomenological damping parameter ↵ in the Landau-
Lifshitz equation describes the coupling of the magneti-
zation to the heat bath causing relaxation of the magne-
tization toward the applied field direction. In the first
approximation the relaxation rate was assumed a lin-
ear function of the damping parameter. Subsequently
Gilbert introduced a critical damping parameter, with a
maximum e↵ective damping for � = 1, to arrive at the
Landau-Lifshitz-Gilbert (LLG) equation32.
The modern form of the LLG at the atomistic level is

given by:

@S
i

@t
= � �

(1 + �2)
[S
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⇥Hi

e↵

+ �S
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⇥ (S
i

⇥Hi

e↵
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Atomistic Spin dynamics  
(Landau-Lifshitz-Gilbert equation)



Stochastic Landau-Lifshitz-Gilbert equation
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TABLE III. Table of derived constants for the ferromagnetic elements Fe, Co and Ni.

Fe Co Ni Unit
Crystal structure BCC HCP FCC -
Unit cell size a 2.5 2.5 2.5 Å
Coordination number z 8 12 12 -
Curie Temperature T

c

1043 1388 600 K
Atomic spin moment µ

s

2.2 1.44 0.6 µ
B

Exchange Energy J
ij

4.5 ⇥10�21 4.5 ⇥10�21 5.6 ⇥10�21 J/link
Anisotropy Energy k

u

4.5 ⇥10�26 4.5 ⇥10�24 4.5 ⇥10�25 J/atom

where S
i

is a unit vector representing the direction of the
magnetic spin moment of site i, � is the gyromagnetic ra-
tio, � is the Gilbert damping parameter, and Hi

e↵

is the
net magnetic field on each spin. The LLG equation de-
scribes the interaction of an atomic spin moment i with
an e↵ective magnetic field, which is obtained from the
negative first derivative of the complete spin Hamilto-
nian, such that:

Hi

e↵

= � 1

µ
s

@H
@S

i

(13)

where µ
s

is the local spin moment. The inclusion of the
spin moment within the e↵ective field is significant, in
that the field is then expressed in units of Tesla, given
a Hamiltonian in Joules. Given typical energies in the
Hamiltonian of 10 µeV - 100 meV range. This gives fields
typically in the range 0.1 - 1000 Tesla, given a spin mo-
ment of the same order as the Bohr magneton (µ

B

).
The LLG equation has two distinct parts, the first part,

S
i

⇥Hi

e↵

induces spin precession around the net field di-
rection Hi

e↵

, while the second, �S
i

⇥(S
i

⇥Hi

e↵

) describes
spin relaxation towards Hi

e↵

. The phenomenological mi-

croscopic damping constant, �, determines the rate of
relaxation towards the net field direction, representing
the coupling of the spin system to a heat bath. It should
be noted that the intrinsic damping � is di↵erent to the
extrinsic damping ↵ measured experimentally. The in-
trinsic damping arises due to microscopic e↵ects such
as spin-lattice33 and electron-spin interactions34, while
the macroscopic damping ↵ has additional contributions
from temperature, disorder, defects, and magnetostatic
interactions.

Langevin Dynamics

In its standard form the LLG equation is strictly only
applicable to simulations at zero temperature. Ther-
mal e↵ects cause thermodynamic fluctuations of the spin
moments which at su�ciently high temperatures are
stronger than the exchange interaction and giving rise
to the ferromagnetic-paramagnetic transition. The ef-
fects of temperature can be taken into account by using
Langevin Dynamics, an approach developed by Brown35.

The basic idea behind Langevin Dynamics is to assume
that the thermal fluctuations on each atomic site can
be represented by a Gaussian white noise term. As the
temperature is increased, the width of the Gaussian dis-
tribution increases, thus representing stronger thermal
fluctuations. In reality the thermal and magnetic fluctu-
ations are correlated at the atomic level, arising from the
dynamic interactions between the atoms and electrons.
New approaches such as colored noise36 and combined
magnetic and molecular dynamics simulations37,38 aim
to better understand the underlying physics of the ther-
mal interactions at the atomic level.

Nevertheless the established Langevin Dynamics
method is widely used for spin dynamics simulations and
incorporates an e↵ective thermal field into the LLG equa-
tion to simulate thermal e↵ects39–41. The thermal fluctu-
ations are represented by a gaussian distribution �(t) in
three dimensions with a mean of zero. At each time step
the instantaneous thermal field on each spin i is given by:

Hi

th

= �(t)

s
2�k

B

T

�µ
s

�t
(14)

where k
B

is the Boltzmann constant, T is the system
temperature, � is the Gilbert damping parameter, � is
the absolute value of the gyromagnetic ratio, µ

s

is the
magnitude of the atomic magnetic moment, and�t is the
integration time step. The e↵ective field for application
in the LLG equation with Langevin Dynamics then reads:

Hi

e↵

= � 1

µ
s

@H
@S

i

+Hi,�

th

. (15)

Given that for each time step three Gaussian dis-
tributed random numbers are required for every spin, ef-
ficient generation of such numbers is essential. vampire
therefore makes use the Mersenne Twister42 uniform ran-
dom number generator and the Ziggurat method43 for
generating the Gaussian distribution.
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Timesteps with the LLG equation

J. Phys.: Condens. Matter 26 (2014) 103202 Topical Review

Figure 1. Time evolution of a single isolated spin in an applied field of 10 T and time step of 1 fs. Magnetization traces (a) and (c) show
relaxation of the magnetization to the z-direction and precession of the x component (the y-component is omitted for clarity) for damping
constants � = 0.1 and � = 0.05 respectively. The points are the result of direction integration of the LLG and the lines are the analytical
solution plotted according to equation (21). Panels (b) and (d) show the corresponding error traces (difference between the expected and
calculated spin components) for the two damping constants for (a) and (c) respectively. For � = 0.1 the error is below 10�6, while for lower
damping the numerical error increases significantly due to the increased number of precessions, highlighting the damping dependence of the
integration time step.

Figure 2. Time step dependence of the mean magnetization for
different reduced temperatures for the Heun integration scheme.
Low (T ⌧ Tc) and high (T � Tc) temperatures integrate accurately
with a 1fs timestep, but in the vicinity of Tc a timestep of around
10�16 is required for this system.

4.4. Monte Carlo methods

While spin dynamics are particularly useful for obtain-
ing dynamic information about the magnetic properties or
reversal processes for a system, they are often not the
optimal method for determining the equilibrium properties, for

example the temperature-dependent magnetization. The Monte
Carlo Metropolis algorithm [122] provides a natural way to
simulate temperature effects where dynamics are not required
due to the rapid convergence to equilibrium and relative ease
of implementation.

The Monte Carlo metropolis algorithm for a classical
spin system proceeds as follows. First a random spin i is
picked and its initial spin direction Si is changed randomly
to a new trial position S0

i , a so-called trial move. The change
in energy 1E = E(S0

i ) � E(Si ) between the old and new
positions is then evaluated, and the trial move is then accepted
with probability

P = exp
✓

� 1E
kBT

◆
(22)

by comparison with a uniform random number in the range
0–1. Probabilities greater than 1, corresponding with a reduc-
tion in energy, are accepted unconditionally. This procedure is
then repeated until N trial moves have been attempted, where
N is the number of spins in the complete system. Each set of
N trial moves comprises a single Monte Carlo step.

The nature of the trial move is important due to two
requirements of any Monte Carlo algorithm: ergodicity and
reversibility. Ergodicity expresses the requirement that all
possible states of the system are accessible, while reversibility
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1 fs (10-15 s) maybe OK for simple ferromagnets, T << Tc



Comparison of LLG and Monte Carlo
J. Phys.: Condens. Matter 26 (2014) 103202 Topical Review

Figure 5. Comparative simulation of temperature-dependent
magnetization for Monte Carlo and LLG simulations. Simulation
parameters assume a nearest neighbour exchange of
6.0 ⇥ 10�21 J/link with a simple cubic crystal structure, periodic
boundary conditions and 21952 atoms. The Monte Carlo
simulations use 50 000 equilibration and averaging steps, while the
LLG simulations use 5000 000 equilibration and averaging steps
with critical damping (� = 1) and a time step of 0.01 fs. The value
of Tc ⇠ 625 K calculated from equation (9) is shown by the dashed
vertical line. The temperature-dependent magnetization is fitted to
the expression m(T ) = (1 � T/Tc)� (shown by the solid line) which
yields a fitted Tc = 631.82 K and exponent � = 0.334 297.

5.1. Angular variation of the coercivity

Assuming a correct implementation of an integration scheme
as described in the previous section, the first test case of interest
is the correct implementation of uniaxial magnetic anisotropy.
For a single spin in an applied field and at zero temperature,
the behaviour of the magnetization is essentially that of a
Stoner–Wohlfarth particle, where the angular variation of the
coercivity, or reversing field, is well known [125]. This test
serves to verify the static solution for the LLG equation by
ensuring an easy axis loop gives a coercivity of Hk = 2ku/µs
as expected analytically. For this problem the Hamiltonian
reads

H = �kuS2
z � µsS · Happ (26)

where ku is the on-site uniaxial anisotropy constant and Happ
is the external applied field. The spin is initialized pointing
along the applied field direction, and then the LLG equation
is solved for the system, until the net torque on the system
S ⇥ Heff  |10�6| T, essentially a condition of local minimum
energy.

The field strength is decreased from saturation in steps
of 0.01 H/Hk and solved again until the same condition is
reached. A plot of the calculated alignment of the magnetiza-
tion to the applied field (S · Happ) for different angles from the
easy axis is shown in figure 6. The calculated hysteresis curve
conforms exactly to the Stoner–Wohlfarth solution.

5.2. Boltzmann distribution for a single spin

To quantitatively test the thermal effects in the model and
the correct implementation of the stochastic LLG or Monte
Carlo integrators, the simplest case is that of the Boltzmann

Figure 6. Plot of alignment of magnetization with the applied field
for different angles of from the easy axis. The 0� and 90� loops
were calculated for very small angles from the easy and hard axes
respectively, since in the perfectly aligned case the net torque is zero
and no change of the spin direction occurs.

Figure 7. Calculated angular probability distribution for a single
spin with anisotropy for different effective temperatures ku/kBT .
The lines show the analytic solution given by equation (27).

distribution for a single spin with anisotropy (or applied
field), where the probability distribution is characteristic of
the temperature and the anisotropy energy. The Boltzmann
distribution is given by:

P(✓) / sin ✓ exp
✓

�ku sin2 ✓

kBT

◆
(27)

where ✓ is the angle from the easy axis. The spin is initialized
along the easy axis direction and the system is allowed
to evolve for 108 time steps after equilibration, recording
the angle of the spin to the easy axis at each time. Since
the anisotropy energy is symmetric along the easy axis, the
probability distribution is reflected and summed about ⇡/2,
since at low temperatures the spin is confined to the upper
well (✓ < ⇡/2). Figure 7 shows the normalized probability
distribution for three reduced temperatures.

The agreement between the calculated distributions is
excellent, indicating a correct implementation of the stochastic
LLG equation.
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VAMPIRE

Code Overview



Programming language and approach

Written in C++ (2011 standard) 


A mixture of object oriented (creation routines) and 
functional (high performance) programming styles


Supports Message Passing Interface (MPI) 
parallelisization, CUDA and OpenCL in alpha test.


Increasingly modular code base, work in progress



Version control

Managed with git version control system and hosted at 
Github


Open source with mixture of GPL and BSD licenses


Branches maintain different parallel versions of the code


•master branch - official releases (very old)

• develop - current up to date version (a bug or two)

• cuda - testing branch for CUDA version



New module structure for new additions

src/module/data.cpp         | variables and arrays in module


src/module/interface.cpp  | user interface to module


src/module/initialise.cpp   | function to initialize module 

                                            data and variables


src/module/internal.h        | header file for sharing variables 

                                            within a module


hdr/module.h                    | interface to main VAMPIRE code



Modules

Each module is self contained and only interacts 
with the main vampire code with a defined interface 
in the module header file


Each module has its own namespace to separate it 
from the main code


Not all code is in modules - but work is underway




VAMPIRE execution flowchart

input
material.mat
unit cell.ucf

Read input files and 
initialize system 
variables

create

Generate crystal 
structure and particle 
shape and initialize 
high performance 
arrays 

simulate

Initialize general 
simulation properties 
and select desired 
program to run

program

Determine changing 
parameters such as 
time, temperature, 
field and integrate 
system

fields

Calculate the local 
field on each spin

spin dynamics (LLG)

Routine to perform a 
single LLG timestep 
for the system

integrate

Integrate system 
using spin dynamics 
or Monte Carlo

random numbers

Calculate thermal 
fields with Mersenne 
Twister/Ziggurat 
algorithm

spin Hamiltonian

Calculate exchange 
energy, anisotropy, 
applied fields 

statistics

Calculate average/
instant magnetization, 
susceptibility, and 
magnetization 
distribution

output

Output time evolution 
of statistics and 
snapshots of the spin 
configuration 



VAMPIRE Input files

Control of the code is through plain text files


Main control file specifying system parameters, 
program, time steps, integrators, global fields, data 
output


Lists magnetic parameters for different atom types 
in the simulation and provides a way to identify 
different magnetic states, interactions, etc

input

material file



Unit Cell File specification (.ucf)

Contains atomic structure and interactions but with 
no restrictions for symmetry or number of interactions

# Unit cell size: 
3.854 3.854 3.715 
# Unit cell vectors: 
1.0 0.0 0.0 
0.0 1.0 0.0 
0.0 0.0 1.0 
# Atoms num, id cx cy cz mat lc hc 
2 
0 0.0  0.0 0 0 0 0 
1 0.5  0.5 0 0 1 0 
# Interactions n exctype, id i j dx dy dz Jij 
2718 tensorial 
0 0 0 -1 -4 -5 2.22436e-27 2.22436e-27 2.35828e-27 
1 0 0 0 -4 -5 4.44872e-27 4.44872e-27 4.71655e-27 
2 0 0 1 -4 -5 2.22436e-27 2.22436e-27 2.35828e-27 
...



Practical 1: compiling the code



Getting the source code

Download the code from github


git clone https://github.com/richard-evans/vampire/ 

Checkout the develop branch


git checkout develop



Compiling the code

Different make targets for different compilers: 

Different targets for different functionality


Combine compiler and version to compile code

g++ (default) 
intel (icc) 
llvm (macOS) 
cray/archer

serial 
parallel 
gcc-cuda

make serial
make serial-llvm



Practical 2: Curie temperature
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Setting up a simulation in Vampire

input file

(program control)


material file

(material properties)

#------------------------------------------ 
# Creation attributes: 
#------------------------------------------ 
create:crystal-structure=fcc 
create:periodic-boundaries-x 
create:periodic-boundaries-y 
create:periodic-boundaries-z 
#------------------------------------------ 
# System Dimensions: 
#------------------------------------------ 
dimensions:unit-cell-size = 3.524 !A 
dimensions:system-size-x = 4.0 !nm 
dimensions:system-size-y = 4.0 !nm 
dimensions:system-size-z = 4.0 !nm 
…

#--------------------------------------------------- 
# Number of Materials 
#--------------------------------------------------- 
material:num-materials=1 
#--------------------------------------------------- 
# Material 1 Nickel Generic 
#--------------------------------------------------- 
material[1]:material-name=Ni 
material[1]:damping-constant=0.01 
material[1]:exchange-matrix[1]=2.757e-21 
material[1]:atomic-spin-moment=0.606 !muB 
material[1]:uniaxial-anisotropy-constant=0.0 
material[1]:material-element=Ni



Spin Hamiltonian for Ni

Ultrafast thermally induced magnetic switching in synthetic ferrimagnets
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Synthetic ferrimagnets are composite magnetic structures formed from two or more anti-
ferromagnetically coupled magnetic sublattices with different magnetic moments. Here, we
report on atomistic spin simulations of the laser-induced magnetization dynamics on such
synthetic ferrimagnets and demonstrate that the application of ultrashort laser pulses leads to
sub-picosecond magnetization dynamics and all-optical switching in a similar manner as in
ferrimagnetic alloys. Moreover, we present the essential material properties for successful laser-
induced switching, demonstrating the feasibility of using a synthetic ferrimagnet as a high
density magnetic storage element without the need of a write field. VC 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4867015]

The dynamic response of magnetic materials to ultra-
short laser pulses is currently an area of fundamental and
practical importance that is attracting a lot of attention. Since
the pioneering work of Beaurepaire et al.,1 it has been known
that the magnetization can respond to a femtosecond laser
pulse on a sub-picosecond timescale. However, studies of
magnetic switching are more recent. In this context, an espe-
cially intriguing phenomenon is that of all-optical switching,
which uses the interaction of short, intense pulses of light
with a magnetic material to alter its magnetic state without
the application of an external magnetic field.2,3 Recent
experiments4–6 and theoretical calculations5,7–9 have demon-
strated that the origin of all-optical switching in ferrimagnetic
alloys is due to ultrafast heating of the spin system. The mag-
netic switching arises due to a transfer of angular momentum
between the two sublattices within the material7,8 and the
resulting exchange-field induced precession.7 Remarkably,
this effect occurs in the absence of any symmetry breaking
magnetic field,5 and can be considered as Thermally Induced
Magnetic Switching (TIMS). So far, TIMS has only been
demonstrated experimentally in the rare-earth transition metal
(RE-TM) alloys GdFeCo and TbCo which, in addition to
their strong magneto-optical response, have two essential
properties for heat-induced switching: antiferromagnetic cou-
pling between the RE and TM sublattices10 and distinct
demagnetization times of the two sublattices.4 The antiferro-
magnetic coupling allows for inertial magnetization dynam-
ics, while the distinct demagnetization times under the action
of a heat pulse allow a transient imbalance in the angular mo-
mentum of the two sublattices, which initiates a mutual high
speed precession enabling ultrafast switching to occur.

Although GdFeCo has excellent switching properties, its
potential use in magnetic data storage is limited by its low an-
isotropy and amorphous structure, precluding the use of sin-
gle magnetic domains typically less than 10 nm in size,
required for future high density magnetic recording media.

One intriguing possibility, and the focus of this paper, would
be the use of a synthetic ferrimagnet (SFiM), consisting of
two transition metal ferromagnets anti-ferromagnetically
exchange coupled by a non-magnetic spacer,11 shown sche-
matically in Fig. 1. The important but as yet unanswered
question is whether all-optical switching would also work in
such an artificial structure and what essential physical proper-
ties of the design are required. Such a composite magnet also
has a number of distinct advantages over intrinsic rare-earth-
transition metal ferrimagnets: the dynamic properties of each
sublattice may be separately selected by choice of material,
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In this Letter we present dynamic studies of such a syn-
thetic ferrimagnet using an atomistic spin model. We investi-
gate the dynamic properties of the separate layers and show
that the demagnetization time is determined primarily by the
local atomic spin moment and the intrinsic Gilbert damping
of the material. We finally consider an exchange-coupled
Fe/FePt synthetic ferrimagnet and show that a short heat-
pulse is sufficient to induce ultrafast heat-induced switching
of the material.

The dynamic properties of the SFiM are studied using an
atomistic spin model using the VAMPIRE software package.12,13

The energetics of the system are described using a
Heisenberg spin Hamiltonian, which in condensed form reads

H ¼ "
X

i<j

JijSi # Sj "
X

i

kuS2
i;z; (1)

where Jij is the exchange energy between nearest neighboring
spins, Si and Sj are unit vectors describing the spin directions
for local sites i and nearest neighbor sites j, respectively, and
ku is the uniaxial anisotropy constant. There are three distincta)richard.evans@york.ac.uk
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Ni.mat

#--------------------------------------------------- 
# Number of Materials 
#--------------------------------------------------- 
material:num-materials=1 
#--------------------------------------------------- 
# Material 1 Nickel Generic 
#--------------------------------------------------- 
material[1]:material-name=Ni 
material[1]:damping-constant=0.01 
material[1]:exchange-matrix[1]=2.757e-21 
material[1]:atomic-spin-moment=0.606 !muB 
material[1]:uniaxial-anisotropy-constant=5.47e-26 
material[1]:material-element=Ni 



input
#------------------------------------------ 
# Creation attributes: 
#------------------------------------------ 
create:crystal-structure=fcc 
create:periodic-boundaries-x 
create:periodic-boundaries-y 
create:periodic-boundaries-z 
#------------------------------------------ 
# System Dimensions: 
#------------------------------------------ 
dimensions:unit-cell-size = 3.524 !A 
dimensions:system-size-x = 4.0 !nm 
dimensions:system-size-y = 4.0 !nm 
dimensions:system-size-z = 4.0 !nm 
#------------------------------------------ 
# Material Files: 
#------------------------------------------ 
material:file=Ni.mat 
#------------------------------------------ 
# Simulation attributes: 
#------------------------------------------ 
sim:temperature=300 
sim:minimum-temperature=0 
sim:maximum-temperature=800 
sim:temperature-increment=25 
sim:time-steps-increment=1 
sim:equilibration-time-steps=1000 
sim:loop-time-steps=1000 

#------------------------------------------ 
# Program and integrator details 
#------------------------------------------ 
sim:program=curie-temperature 
sim:integrator=monte-carlo 
#------------------------------------------ 
# Data output 
#------------------------------------------ 
output:real-time 
output:temperature 
output:magnetisation 
output:magnetisation-length 
output:mean-magnetisation-length 



Running Vampire

rfle500@MacPro:~$ vampire 
                                                _           
                                               (_)          
                    __   ____ _ _ __ ___  _ __  _ _ __ ___  
                    \ \ / / _` | '_ ` _ \| '_ \| | '__/ _ \ 
                     \ V / (_| | | | | | | |_) | | | |  __/ 
                      \_/ \__,_|_| |_| |_| .__/|_|_|  \___| 
                                         | |                
                                         |_|                

                      Version 3.0.3 Aug  4 2014 21:00:13 

  Licensed under the GNU Public License(v2). See licence file for details. 

  Lead Developer: Richard F L Evans <richard.evans@york.ac.uk> 

  Contributors: Weijia Fan, Phanwadee Chureemart, Joe Barker,  
                Thomas Ostler, Andreas Biternas, Roy W Chantrell 
  
                Compiled with:  GNU C++ Compiler 
                Compiler Flags:  

================================================================================ 
Mon Aug  4 21:56:21 2014 
================================================================================ 
Initialising system variables 
Creating system 
Generating neighbour list..........done! 



Curie temperature calculation

Calculate phase transition in Ni


Essential temperature dependent property of a magnetic 
material
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sults. For a recent extensive comparison between classical and
quantum Heisenberg Hamiltonians see (? ). For the classical
statistics

mc(T ) = 1− kBT
J0

1
N ∑

kkk

1
1− γkkk

≈ 1− 1
3

T
Tc
, (1)

where T is the temperature, kB is the Boltzmann constant and
Tc is the Curie temperature and we have used the RPA relation
to relate W and Tc (J0/3 ≈ WkBTc)? (exact for the spherical
model? ), where W = (1/N ∑kkk

1
1−γkkk

) is the Watson integral.
Under the same conditions in the quantum Heisenberg case

one obtains the T 3/2 Bloch law,

mq(T ) = 1− 1
3

s
(

T
Tc

)3/2
(2)

where s is a slope factor and defined as

s = S1/2 (2πW )−3/2 ζ (3/2). (3)

where S is the spin value and ζ (x) the well-known Riemann
ζ function, and RPA relation (3kBTc = J0S2/W ) has been
used. We note that Kuz’min22 utilized semi-classical linear
spin wave theory to determine s, and so use the experimen-
tally measured magnetic moment of the studied metals.

Mapping between the classical and quantum m(T ) expres-
sions is done simply by equalizing Eqs. (1) and (2) yield-
ing τcl = sτ3/2

q . This expression therefore relates the ther-
mal fluctuations between the classical and quantum Heisen-
berg models at low temperatures. At higher temperatures
more terms are required to describe m(T ) for both approaches,
making the simple identification between temperatures cum-
bersome. At temperatures close to and above Tc, βεkkk → 0
is a small parameter and thus the thermal Bose distribu-
tion 1/(exp(βεkkk)− 1) ≈ βεkkk tends to the Boltzmann distri-
bution, thus the effect of the spin quantization is negligible
here. For this temperature region, a power law is expected,
m(τ)≈ (1− τ)β , where β = 1/3 for the Heisenberg model in
both cases.

The existence of a simple relation between classical and
quantum temperature dependent magnetization at low temper-
atures leads to the question - does a similar scaling quantita-
tively describe the behavior of elemental ferromagnets for the
whole range of temperatures? Our starting point is to repre-
sent the temperature dependent magnetization in the simplest
form arising from a straightforward interpolation of the Bloch
law and critical behavior24 given by the Curie-Bloch equation

m(τ) = (1− τα)β (4)

where α is an empirical constant and β ≈ 1/3 is the critical
exponent. We will demonstrate that this simple expression is
sufficient to describe the temperature dependent magnetiza-
tion in elemental ferromagnets with a single fitting parameter
α .

An alternative to the Curie-Bloch equation was proposed
by Kuz’min22 which has the form

m(τ) = [1− sτ3/2 − (1− s)τ p]1/3. (5)

The parameters s and p are taken as fitting parameters, where
it was found that p = 5/2 for all ferromagnets except for Fe
and s relates to the shape of the m(T ) curve and corresponds
to the extent that the magnetization follows Bloch’s law at low
temperatures. In the case of a pure Bloch ferromagnet where
p = 3/2 and α = p equations (4) and (5) are identical, demon-
strating the same physical origin of these phenomenological
equations. At low temperatures these functions are related by
τα = sτ3/2 which can be used to estimate α from s?

While Kuz’min’s equation quantitatively describes the
shape of the magnetization curve, it does not link the macro-
scopic Curie temperature to microscopic exchange interac-
tions. These exchange interactions can be conveniently de-
termined by ab-initio first principles calculations? . Exchange
interactions calculated from first principles are often long
ranged and oscillatory in nature and so analytical determi-
nation of the Curie temperature can be done with a number
of different standard approaches such as mean-field (MFA)
or random phase approximations (RPA), neither of which are
particularly accurate due to the approximations involved. A
much more successful method is incorporating the micro-
scopic exchange interactions into a multiscale atomistic spin
model which has been shown to yield Curie temperatures
much closer to experiment21. The clear advantage of this ap-
proach is the direct linking of electronic scale calculated pa-
rameters to macroscopic thermodynamic magnetic properties
such as the Curie temperature. What is interesting is that the
classical spin fluctuations give the correct Tc for a wide range
of magnetic materials21? , suggesting that the particular value
of the exchange parameters and the shape of the m(T ) curve
are largely independent quantities, as suggested by Eq. (3).
The difficulty with the classical model is that the shape of the
curve is intrinsically wrong when compared to experiment.

To obtain accurate data for the classical temperature depen-
dent magnetization for the elemental ferromagnets Co, Fe, Ni
and Gd we proceed to simulate them using the classical atom-
istic spin model. The energetics of the system are described
by the classical spin Hamiltonian15 of the form

H =−∑
i< j

Ji jSi ·S j (6)

where Si and S j are unit vectors describing the direction of the
local and nearest neighbor magnetic moments at each atomic
site and Ji j is the nearest neighbor exchange energy given by?

Ji j =
3kBTc

γz
(7)

where γ(W ) gives a correction factor from the MFA and which
for RPA γ = 1/W . The numerical calculations have been car-
ried out using the VAMPIRE software package25. The sim-
ulated system for Co, Ni, Fe and Gd consists of a cube 20
nm3 in size with periodic boundary conditions applied to re-
move any surface effects. The equilibrium temperature depen-
dent properties of the system are calculated using the Hinzke-
Nowak Monte Carlo algorithm15,26 resulting in the calculated
temperature dependent magnetization curves for each element
shown in Fig. 1.
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input
#------------------------------------------ 
# Creation attributes: 
#------------------------------------------ 
create:crystal-structure=fcc 
create:periodic-boundaries-x 
create:periodic-boundaries-y 
create:periodic-boundaries-z 
#------------------------------------------ 
# System Dimensions: 
#------------------------------------------ 
dimensions:unit-cell-size = 3.524 !A 
dimensions:system-size-x = 4.0 !nm 
dimensions:system-size-y = 4.0 !nm 
dimensions:system-size-z = 4.0 !nm 
#------------------------------------------ 
# Material Files: 
#------------------------------------------ 
material:file=Ni.mat 
#------------------------------------------ 
# Simulation attributes: 
#------------------------------------------ 
sim:temperature=300 
sim:minimum-temperature=0 
sim:maximum-temperature=800 
sim:temperature-increment=25 
sim:time-steps-increment=1 
sim:equilibration-time-steps=1000 
sim:loop-time-steps=1000 

#------------------------------------------ 
# Program and integrator details 
#------------------------------------------ 
sim:program=curie-temperature 
sim:integrator=monte-carlo 
#------------------------------------------ 
# Data output 
#------------------------------------------ 
output:real-time 
output:temperature 
output:magnetisation 
output:magnetisation-length 
output:mean-magnetisation-length 
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the dominant atomic species in Nd
2

Fe
14

B, it is expected
that the magnetization is dominated by the Fe sublattice.

Fe exchange interactions

The first approach in classical spin models is to calcu-
late an e↵ective pairwise nearest neighbor exchange inter-
action, derived from the Curie temperature of the system
using a molecular field approximation. For Nd

2

Fe
14

B this
approach is complicated by the complex crystal struc-
ture which makes a global nearest neighbor distance is a
poorly defined quantity, leading to di↵erent numbers of
interactions for di↵erent atomic sites. As a first approxi-
mation we therefore utilize the results of ab-initio calcu-
lations of exchange interactions in bcc Fe7. The range
dependence of the calculated exchange interactions con-
veniently fit to an exponential function for the first five
coordination shells, and so the fitted function gives J

Fe

(r)
is given by

J
Fe

(r) = J
0

+ J
r

exp(�r/r
0

) (7)

where r is the interatomic separation, r
0

is a characteris-
tic distance, and J

0

and J
r

are fitting constants. The ex-
change interactions are truncated to zero for interatomic
separations greater than 5Å. The fitted function is shown
in Fig. 2. Applying the fitted exchange interactions to the
Nd

2

Fe
14

B system yields a simulated Curie temperature
of around 800K. Already the greater interatomic sepa-
ration reduces the Curie temperature compared to bulk
bcc Fe, but this value is still higher than the experimen-
tal value of 585K. Given the significantly lower density
of the Fe sublattice compared with bcc Fe, it is not un-
reasonable to expect reduced overlap of atomic orbitals
of the Fe sites, with a corresponding reduction in the ex-
change interactions. To approximate this e↵ect we treat
the reduction in the pairwise exchange interactions by
straightforward scaling of the ab-initio values so that the
calculated Curie temperature agrees better with experi-
ment. The scaled curve and values are shown in Fig. 2,
and the values used for the scaled fitted function are pre-
sented in Tab. I. This crude scaling is not particularly
satisfactory, but has the advantage of at least maintain-
ing the long range nature and distance dependence of
the exchange interactions and is at least as good as the
nearest neighbor approximation commonly employed.

Nd exchange interactions

The Nd sublattice is known to couple ferromagnetically
to the Fe sublattice at higher temperatures, and experi-
mental measurements8 show a high degree of ordering of
the Nd sublattice at room temperature. This ordering
at significant fractions of the Curie temperature necessi-
tates a relatively strong exchange coupling between the
Fe and Nd sites, at least compared with bulk Nd. In con-
trast crystal field calculations suggest a weak exchange
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FIG. 2. Range dependence of the exchange interactions from
ab-initio calculations7. Scaled data arising from reduced over-
lap of atomic orbitals is used to calculate the Fe-Fe interac-
tions in the Nd crystal. Color Online.

coupling9 and so the strength of the Nd-Fe exchange in-
teraction is an open question. We therefore treat the
Fe-Nd exchange is a variable parameter in the model in
order to best fit the available experimental data. The
nearest neighbor distance is better defined for the Fe-
Nd interactions, and so a cut o↵ distance of 4Åis chosen
in the nearest neighbor approach, where all interactions
have the same strength. The Nd-Nd interactions are as-
sumed to be negligible, and are consequently ignored in
the model.

Temperature dependent magnetization

Using the derived exchange parameters described pre-
viously, we now present atomistic calculations of the tem-
perature dependent magnetization of the Fe sublattice
using the Monte Carlo method and shown in Fig. 3(a).
By empirical interpolation of the Bloch law and critical
behavior10, the reduced temperature dependent magne-
tization is given by the expression:

m(T ) =


1�

✓
T

T
c

◆↵��
(8)

where T is the temperature, T
c

is the Curie tempera-
ture, ↵ is an empirical constant and � is the critical ex-
ponent. Since classical systems do not follow Bloch’s
Law (low temperatures always have finite fluctuations in
m), ↵ = 1, and so fitting to the calculated tempera-
ture dependent magnetization yields a critical exponent
of � = 0.343 ± 0.002 and Curie temperature of 581 K.
Due to the long range nature of the exchange interac-
tions, the critical exponent � is slightly lower than the
3D Heisenberg model, also seen in calculations of FePt11.
Due to the neglect of quantum e↵ects within the clas-

sical spin model, the calculated temperature dependent
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Figure 5. Comparative simulation of temperature-dependent
magnetization for Monte Carlo and LLG simulations. Simulation
parameters assume a nearest neighbour exchange of
6.0 ⇥ 10�21 J/link with a simple cubic crystal structure, periodic
boundary conditions and 21952 atoms. The Monte Carlo
simulations use 50 000 equilibration and averaging steps, while the
LLG simulations use 5000 000 equilibration and averaging steps
with critical damping (� = 1) and a time step of 0.01 fs. The value
of Tc ⇠ 625 K calculated from equation (9) is shown by the dashed
vertical line. The temperature-dependent magnetization is fitted to
the expression m(T ) = (1 � T/Tc)� (shown by the solid line) which
yields a fitted Tc = 631.82 K and exponent � = 0.334 297.

5.1. Angular variation of the coercivity

Assuming a correct implementation of an integration scheme
as described in the previous section, the first test case of interest
is the correct implementation of uniaxial magnetic anisotropy.
For a single spin in an applied field and at zero temperature,
the behaviour of the magnetization is essentially that of a
Stoner–Wohlfarth particle, where the angular variation of the
coercivity, or reversing field, is well known [125]. This test
serves to verify the static solution for the LLG equation by
ensuring an easy axis loop gives a coercivity of Hk = 2ku/µs
as expected analytically. For this problem the Hamiltonian
reads

H = �kuS2
z � µsS · Happ (26)

where ku is the on-site uniaxial anisotropy constant and Happ
is the external applied field. The spin is initialized pointing
along the applied field direction, and then the LLG equation
is solved for the system, until the net torque on the system
S ⇥ Heff  |10�6| T, essentially a condition of local minimum
energy.

The field strength is decreased from saturation in steps
of 0.01 H/Hk and solved again until the same condition is
reached. A plot of the calculated alignment of the magnetiza-
tion to the applied field (S · Happ) for different angles from the
easy axis is shown in figure 6. The calculated hysteresis curve
conforms exactly to the Stoner–Wohlfarth solution.

5.2. Boltzmann distribution for a single spin

To quantitatively test the thermal effects in the model and
the correct implementation of the stochastic LLG or Monte
Carlo integrators, the simplest case is that of the Boltzmann

Figure 6. Plot of alignment of magnetization with the applied field
for different angles of from the easy axis. The 0� and 90� loops
were calculated for very small angles from the easy and hard axes
respectively, since in the perfectly aligned case the net torque is zero
and no change of the spin direction occurs.

Figure 7. Calculated angular probability distribution for a single
spin with anisotropy for different effective temperatures ku/kBT .
The lines show the analytic solution given by equation (27).

distribution for a single spin with anisotropy (or applied
field), where the probability distribution is characteristic of
the temperature and the anisotropy energy. The Boltzmann
distribution is given by:

P(✓) / sin ✓ exp
✓

�ku sin2 ✓

kBT

◆
(27)

where ✓ is the angle from the easy axis. The spin is initialized
along the easy axis direction and the system is allowed
to evolve for 108 time steps after equilibration, recording
the angle of the spin to the easy axis at each time. Since
the anisotropy energy is symmetric along the easy axis, the
probability distribution is reflected and summed about ⇡/2,
since at low temperatures the spin is confined to the upper
well (✓ < ⇡/2). Figure 7 shows the normalized probability
distribution for three reduced temperatures.

The agreement between the calculated distributions is
excellent, indicating a correct implementation of the stochastic
LLG equation.
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Real ferromagnets: Kuz’min equation

Shape of Temperature Dependence of Spontaneous Magnetization of Ferromagnets:
Quantitative Analysis
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Analysis of available experimental data shows that there exists a limited variety of shapes of
temperature dependence of spontaneous magnetization. For most metallic ferromagnets the shape (as
opposed to scale) of the Ms versus T curve can be characterized by a single dimensionless parameter. A
numerical description of the dependence Ms!T" for a particular ferromagnetic material is thus reduced to
evaluating three quantities: the saturation magnetization M0 # Ms!0", the Curie point TC, and the shape
parameter s. It is demonstrated that classical spin (S $ 1) dynamics fails to describe correctly either of
the finite-temperature characteristics, TC or s.

DOI: 10.1103/PhysRevLett.94.107204 PACS numbers: 75.30.Cr

Spontaneous magnetization Ms is the most fundamental
property of a ferromagnet. Not surprisingly a lot of effort
has been spent over the last century on attempts to describe
theoretically Ms as a function of temperature, between zero
Kelvin and the Curie point TC, where Ms vanishes. At
present only the problem of evaluating saturation magne-
tization M0, that is Ms!T $ 0", can be considered solved;
calculations based upon the density functional theory
(DFT) produce values of M0 which are consistently in
good agreement with experiment [1]. There have also
appeared many reports of TC calculations (see, e.g.,
Ref. [2], also Ref. [3], and references therein) employing
a combination of DFT and Langevin’s spin dynamics,
based on the classical Heisenberg model. The classical
(S $ 1) approximation is examined at some length later
and found inapplicable, in particular, to TC calculations.

However, the main subject of this Letter is the shape,
rather than the scale, of temperature dependence of sponta-
neous magnetization. To study the shape of Ms!T" in its
pure form, it is convenient to introduce reduced sponta-
neous magnetization, m # Ms=M0, and reduced tempera-
ture, ! # T=TC. Consider the following question: How
various are the observed forms of m!!"? That there is no
universal function m!!" valid for all ferromagnets (the so-
called Law of Corresponding States) was established ex-
perimentally over half a century ago [4,5]. If so, how many
extra parameters are needed to fully describe the variety of
existing shapes of m!!"?

An immediate answer is given by the molecular field
theory: m!!" depends on a single dimensionless parameter.
In the localized, Weiss-Brillouin approach, this parameter
is the relevant atomic quantum number, S or J. In the
itinerant version, due to Stoner, it is the ratio of the
exchange to the Fermi energy. (An excellent description
of both cases can be found in Morrish’s textbook [6],
whereas Aharoni’s monograph [7] contains rather accurate
explicit expressions for m!!" obtained in the Weiss-
Brillouin approach with 1=2< S< 7=2.) However, one
cannot be fully satisfied with this answer since the mo-

lecular field theory does not describe the shape of m!!"
correctly.

There is no general analytical expression for m!!" be-
yond the molecular field approximation, except in the
two limiting cases, ! ! 0 and ! ! 1, although it has
been recently demonstrated [8,9] that an accurate de
scription of m!!" in the entire interval 0< !< 1 is pro-
vided by a combination of two (in some cases, three)
simple power laws, one for each of the temperature
subintervals.

To advance the matters further, we propose to present the
function m!!" in the following form:

m!!" $ %1& s!3=2 & !1& s"!p'1=3; (1)

where s and p are parameters, p > 3=2, s > 0.
Equation (1) is constructed to obey Bloch’s 3=2 power
law at low temperatures, m ( 1& 1

3 s!
3=2 as ! ! 0,

whereas in the critical region, ! ! 1, m is proportional
to !1& !"1=3, as prompted by the critical behavior of the
Heisenberg model [10].

TABLE I. Characteristics of temperature dependence of spon-
taneous magnetization of ferromagnets: saturation magnetization
M0, Curie temperature TC, parameters entering Eq. (1), p and s.
The TC values are those used to normalize the data presented in
Fig. 1; they do not necessarily coincide with the values given in
the cited references.

Compound M0 (emu=g) TC (K) p s Source

Fe 222 1044 4 0.35 Ref. [11]
Co, hcp 164 1385 5=2 0.11 Refs. [4,12]
Co, fcc 166 1385 5=2 0.11 Ref. [5]
Ni 57.6, 58.6 628, 631 5=2 0.15 Refs. [11,13]
Gd 268 291 5=2 1.3 Ref. [14]
YCo5 124 930 5=2 0.7 Ref. [15]
Y2Fe17 170 312 5=2 0.6 Ref. [16]
GdZn 186 270 5=2 1.9 Ref. [17]
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Available experimental data were fitted to Eq. (1). The

best-fit parameters are listed in Table I and the correspond-
ing curves are shown in Fig. 1.

It turns out that all but one of the considered ferromag-
nets are described by Eq. (1) with p ! 5=2. This result is
not quite unexpected; it reminds us of Dyson’s low-
temperature expansion [18] for the quantity m3, truncated
after the third term. The only exception from this rule is
bcc iron, which obeys Eq. (1) with p ! 4. Setting aside this

exception, one can say that the entire variety of observed
m"!# dependences can be characterized by a single pa-
rameter—the shape parameter s.

At this stage Eq. (1) should be regarded as an empirical
expression; we are unable to strictly explain it or the fact
that p ! 5=2 in most cases.

We stress, however, that Eq. (1) pretends to describe the
experimental m"!# dependence as a whole, not just the
asymptotics at ! ! 0 or ! ! 1. Small details of this de-
pendence are often sample specific and sometimes can be
traced back to impurities. A didactic example is Ni
[Fig. 1(a)]. The more recent and more detailed data of
Crangle and Goodman [11] (open circles) deviate from
Eq. (1) (continuous line) around ! ! 0:7. However, the
earlier data of Weiss and Forrer [13] (filled circles) show
no such anomaly and comply with Eq. (1) everywhere. We
therefore deliberately avoid considering any experimental
data other than those obtained on stoichiometrically pure
single crystals. It is interesting that the genuine anomaly
associated with the hcp-fcc transition in cobalt is not
visible on the scale of Fig. 1(c). Note that two slightly
different values of M0 were used to normalize the data
above and below the transition point (indicated with an
arrow) as could be reasonably expected from two structur-
ally distinct phases.

Thus, the problem of describing temperature depen-
dence of spontaneous magnetization is reduced to evaluat-
ing three quantities: two scale factors, M0 and TC, and one
shape parameter s. Making use of the classical spin-wave
theory [19], the latter can be expressed as follows:

s ! 3

8
"$3=2#

!
3

2

"
$B

M0

!
kTC

D

"
3=2

! 0:176
$B

M0

!
kTC

D

"
3=2

;

(2)

where #"x# stands for Riemann’s # function, #"32# % 2:612
[20], and D is spin-wave stiffness (the coefficient in the
parabolic magnon dispersion relation, !h! ! Dq2, valid in
the limit q ! 0). Both M0 and D are ground state proper-
ties, and as such they should be described well by the DFT.
This is particularly true about M0 [1], the situation for D
being somewhat less satisfactory [2,3]. The discrepancies
in the latter case could be accounted for, partially at least,
by the errors made when deducing D from both experi-
mental and calculated dispersion curves. The fact that
agreement with experiment is very good at larger q [21]
leaves room for optimism.

As regards Eq. (2) itself, it seems to relate s and D
correctly, insofar as the available data allow us to judge;
see Table II. Here, once again, iron is a notable exception,
its scalc being less than one-half of the corresponding
‘‘experimental’’ value from Table I.

Unlike M0 and D, Curie temperature is not a ground
state property, so no quantitative description of TC can be
reasonably expected from DFT alone. As a first application
of the obtained formula (1), let us demonstrate that DFT
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FIG. 1. Reduced spontaneous magnetization versus reduced
temperature for several ferromagnets. The continuous lines
were calculated using Eq. (1) with the p and s of Table I. The
symbols are experimental data points from (a) Refs. [11] (&) and
[13] (!); (b) Ref. [11]; (c) Refs. [5] (&), [12] (!), and [4] (4);
(d) Ref. [14]; (e) Ref. [15]; (f) Ref. [16]; (g) Ref. [17]. The arrow
marks the hcp-fcc transition point in cobalt.
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Classical model

Assume m(T) well fitted by Curie-Bloch equation

Classical model: α = 1
Real ferromagnets: α ≠ 1 

Simplest rescaling:

Phenomenological temperature rescaling
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FIG. 2. Simulated demagnetization of Ni comparing classical and
rescaled models with experimental data from [6]. The rescaled
dynamic simulations show quantitative agreement with experiment
from an atomic level model. Color Online.

For the rescaling of the simulation results to the experimen-
tal data, we therefore map the as-calculated temperature de-
pendent properties to a real temperature T̃ that is equivalent
to the experimental measurement temperature. The reduced
real temperature τ̃ = T̃/Tc is given by

τ̃ = τ
1
α (8)

where α is the scaling exponent from Eq. (4). The physical
interpretation of the rescaling is that at low temperatures the
allowed spin fluctuations in the classical limit are over esti-
mated and so this corresponds to a higher effective tempera-
ture than given in the simulation.

Using this simple temperature rescaling we can now obtain
the scaling exponent α by fitting the simulated temperature
dependent magnetization to the experimental data. α is deter-
mined by a two-step fitting procedure. First Eq. (4) is fitted to
the simulated temperature dependent magnetization to obtain
Tc and β for α = 1. Fixing Tc and β , Eq. (4) is then fitted
to the experimental data as given by Eq. (5) to obtain α . The
final fitted parameters are given in Tab. I. The temperature
rescaling is then applied to the simulated temperature depen-
dent magnetization and directly compared to the experimen-
tal line, as shown by the corrected simulation data in Fig. 1.
For Co, Ni and Gd the agreement between the rescaled sim-
ulation data and the experimental measurement is remarkable
given the simplicity of the approach. The fit for Fe is not as
good as for the others due to the peculiarity of the experimen-
tally measured magnetization curve, as noted by Kuz’min[22].
However the simple rescaling presented here is accurate to a
few percent over the whole temperature range, and if greater
accuracy is required then a non-analytic temperature rescal-
ing can be used to give exact agreement with the experimental
data.

The ability of direct interpolation of Bloch’s Law with crit-
ical scaling to describe the temperature dependent magnetiza-
tion is significant for two reasons. Firstly, it provides a sim-

TABLE I. Fitting parameters for the temperature dependent magne-
tization derived from the classical spin model simulations by fitting
to Eq. (4) for α = 1 (Tc and β ) and by secondary fitting to Eq. (5) to
obtain the rescaling factor α .

Co Fe Ni Gd
Tc 1395 1049 635 294
β 0.340 0.339 0.341 0.339
α 2.369 2.876 2.322 1.278

ple way to parameterize experimentally measured temperature
dependent magnetization in terms of only three parameters
via Eq. (4). Secondly, it allows a direct and accurate deter-
mination of the temperature dependence of all the parame-
ters needed for numerical micromagnetics at elevated temper-
atures from first principles when combined with atomistic spin
model simulations. We also expect the same form is appli-
cable to other technologically important composite magnets
such as CoFeB, NdFeB or FePt alloys.

We now proceed to demonstrate the power of the rescal-
ing method by considering magnetization dynamics using a
Langevin dynamics approach[15] with temperature rescaling
to investigate the laser-induced sub picosecond demagnetiza-
tion of Ni first observed experimentally by Beaurepaire et al.
[6]. The laser pulse is simulated using the two temperature
model[35] with parameters obtained for Ni[36]. The simu-
lated magnetization dynamics for the classical and rescaled
calculations are shown along with the experimental results
in Fig. 2. As expected the standard classical model shows
poor agreement with experiment because of the incorrect
m(T ). However, after applying dynamic temperature rescal-
ing quantitative agreement is found between the atomistic
model and experiment. This result fully validates our ap-
proach by demonstrating the ability to describe both equilib-
rium and dynamic properties of magnetic materials at all tem-
peratures.

In conclusion, we have performed atomistic spin model
simulations of the temperature dependent magnetization of
the elemental ferromagnets Ni, Fe, Co and Gd to determine
the Curie temperature directly from the microscopic exchange
interactions. Using a simple temperature rescaling consid-
ering classical and quantum spin wave fluctuations we find
quantitative agreement between the simulations and experi-
ment for the temperature dependent magnetization. By rescal-
ing the temperature in this way it is now possible to derive
all temperature dependent magnetic properties in quantita-
tive agreement with experiment from a microscopic atomistic
model. In addition we have shown the applicability of the ap-
proach to modeling ultrafast magnetization dynamics, also in
quantitative agreement with experiment. This approach now
enables accurate temperature dependent simulations of mag-
netic materials suitable for a wide range of materials of prac-
tical and fundamental interest.

Finally it is interesting to ponder what is the physical origin

2

to a decrease of the macroscopic magnetization M(T ) as
temperature increases.[25] In the limit of low temperatures,
m(T ) = M(T )/M(0) can be calculated as m = 1 − ρ(T ),
where ρ(T ) = (1/N )∑kkk nkkk is the sum over the wave vec-
tor kkk of the spin wave occupation number in the first Brillouin
zone[26, 27]. The different forms of m(T ) then depend on
the specific nkkk used. The occupation number of a spin wave
of energy εk follows the Boltzmann law in reciprocal space,
nkkk = kBT/εkkk, where T is the temperature, kB is the Boltz-
mann constant. Whilst quantum spin waves follow the Bose-
Einstein distribution (nkkk = 1/(exp(εkkk/kBT ))−1)).

Given that the spin wave energies εkkk are the same in both the
quantum and classical model the difference in the form of the
M(T ) curve comes solely from the different statistics. We can
illustrate the difference in the statistics by considering the sim-
plest possible ferromagnet described by a quantum and clas-
sical spin Heisenberg Hamiltonian. To do so, we consider the
anisotropy and external magnetic fields as small contributions
to the Hamiltonian in comparison to the exchange interaction
energy. Thus, the energy can be written as εkkk = J0(1− γkkk),
where γkkk = (1/z)∑ j J0 j exp(−ikkkrrr0 j), rrr0 j = rrr0 − rrr j with rrr0 j is
the relative position of the z nearest neighbors.

The integral ρ(T ) = (1/N )∑kkk nkkk at low temperatures for
both quantum and classical statistics are very-well known
results.[26] For the classical statistics

mc(T ) = 1− kBT
J0

1
N ∑

kkk

1
1− γkkk

≈ 1− 1
3

T
Tc
, (1)

where Tc is the Curie temperature and we have used the
random-phase approximation (RPA) relation to relate W and
Tc (J0/3 ≈ WkBTc)[28] (exact for the spherical model [29]),
where W = (1/N ∑kkk

1
1−γkkk

) is the Watson integral.
Under the same conditions in the quantum Heisenberg case

one obtains the T 3/2 Bloch law,

mq(T ) = 1− 1
3

s
(

T
Tc

)3/2
(2)

where s is a slope factor given by

s = S1/2 (2πW )−3/2 ζ (3/2). (3)

where S is the spin value and ζ (x) the well-known Riemann
ζ function, and the RPA relation (3kBTc = J0S2/W ) has been
used. We note that Kuz’min[22] utilized semi-classical linear
spin wave theory to determine s, and so use the experimen-
tally measured magnetic moment and avoid to the well known
problem of choosing a value of S for the studied metals.

Mapping between the classical and quantum m(T ) expres-
sions is done simply by equalizing Eqs. (1) and (2) yield-
ing τcl = sτ3/2

q . This expression therefore relates the ther-
mal fluctuations between the classical and quantum Heisen-
berg models at low temperatures. At higher temperatures
more terms are required to describe m(T ) for both approaches,
making the simple identification between temperatures cum-
bersome. At temperatures close to and above Tc, βεkkk → 0

is a small parameter and thus the thermal Bose distribu-
tion 1/(exp(βεkkk)− 1) ≈ βεkkk tends to the Boltzmann distri-
bution, thus the effect of the spin quantization is negligible
here. For this temperature region, a power law is expected,
m(τ)≈ (1− τ)β , where β = 1/3 for the Heisenberg model in
both cases.

The existence of a simple relation between classical and
quantum temperature dependent magnetization at low temper-
atures leads to the question - does a similar scaling quantita-
tively describe the behavior of elemental ferromagnets for the
whole range of temperatures? Our starting point is to repre-
sent the temperature dependent magnetization in the simplest
form arising from a straightforward interpolation of the Bloch
law[25] and critical behavior[30] given by the Curie-Bloch
equation

m(τ) = (1− τα)β (4)

where α is an empirical constant and β ≈ 1/3 is the critical
exponent. We will demonstrate that this simple expression is
sufficient to describe the temperature dependent magnetiza-
tion in elemental ferromagnets with a single fitting parameter
α . An alternative to the Curie-Bloch equation was proposed
by Kuz’min[22] which has the form

m(τ) = [1− sτ3/2 − (1− s)τ p]1/3. (5)

The parameters s and p are taken as fitting parameters, where
it was found that p = 5/2 for all ferromagnets except for Fe
and s relates to the form of the m(T ) curve and corresponds to
the extent that the magnetization follows Bloch’s law at low
temperatures. In the case of a pure Bloch ferromagnet where
p= 3/2 and α = p equations (4) and (5) are identical, demon-
strating the same physical origin of these phenomenological
equations.

While Kuz’min’s equation quantitatively describes the form
of the magnetization curve, it does not link the macro-
scopic Curie temperature to microscopic exchange interac-
tions which can be conveniently determined by ab-initio first
principles calculations[31]. Exchange interactions calculated
from first principles are often long ranged and oscillatory
in nature and so analytical determination of the Curie tem-
perature can be done with a number of different standard
approaches such as mean-field (MFA) or random phase ap-
proximations (RPA), neither of which are particularly accu-
rate due to the approximations involved. A much more suc-
cessful method is incorporating the microscopic exchange
interactions into a multiscale atomistic spin model which
has been shown to yield Curie temperatures much closer to
experiment[21]. The clear advantage of this approach is the
direct linking of electronic scale calculated parameters to
macroscopic thermodynamic magnetic properties such as the
Curie temperature. What is interesting is that the classical
spin fluctuations give the correct Tc for a wide range of mag-
netic materials[21, 31], suggesting that the particular value of
the exchange parameters and the form of the m(T ) curve are
largely independent quantities, as suggested by Eq. (3). The
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Figure 5. Comparative simulation of temperature-dependent
magnetization for Monte Carlo and LLG simulations. Simulation
parameters assume a nearest neighbour exchange of
6.0 ⇥ 10�21 J/link with a simple cubic crystal structure, periodic
boundary conditions and 21952 atoms. The Monte Carlo
simulations use 50 000 equilibration and averaging steps, while the
LLG simulations use 5000 000 equilibration and averaging steps
with critical damping (� = 1) and a time step of 0.01 fs. The value
of Tc ⇠ 625 K calculated from equation (9) is shown by the dashed
vertical line. The temperature-dependent magnetization is fitted to
the expression m(T ) = (1 � T/Tc)� (shown by the solid line) which
yields a fitted Tc = 631.82 K and exponent � = 0.334 297.

5.1. Angular variation of the coercivity

Assuming a correct implementation of an integration scheme
as described in the previous section, the first test case of interest
is the correct implementation of uniaxial magnetic anisotropy.
For a single spin in an applied field and at zero temperature,
the behaviour of the magnetization is essentially that of a
Stoner–Wohlfarth particle, where the angular variation of the
coercivity, or reversing field, is well known [125]. This test
serves to verify the static solution for the LLG equation by
ensuring an easy axis loop gives a coercivity of Hk = 2ku/µs
as expected analytically. For this problem the Hamiltonian
reads

H = �kuS2
z � µsS · Happ (26)

where ku is the on-site uniaxial anisotropy constant and Happ
is the external applied field. The spin is initialized pointing
along the applied field direction, and then the LLG equation
is solved for the system, until the net torque on the system
S ⇥ Heff  |10�6| T, essentially a condition of local minimum
energy.

The field strength is decreased from saturation in steps
of 0.01 H/Hk and solved again until the same condition is
reached. A plot of the calculated alignment of the magnetiza-
tion to the applied field (S · Happ) for different angles from the
easy axis is shown in figure 6. The calculated hysteresis curve
conforms exactly to the Stoner–Wohlfarth solution.

5.2. Boltzmann distribution for a single spin

To quantitatively test the thermal effects in the model and
the correct implementation of the stochastic LLG or Monte
Carlo integrators, the simplest case is that of the Boltzmann

Figure 6. Plot of alignment of magnetization with the applied field
for different angles of from the easy axis. The 0� and 90� loops
were calculated for very small angles from the easy and hard axes
respectively, since in the perfectly aligned case the net torque is zero
and no change of the spin direction occurs.

Figure 7. Calculated angular probability distribution for a single
spin with anisotropy for different effective temperatures ku/kBT .
The lines show the analytic solution given by equation (27).

distribution for a single spin with anisotropy (or applied
field), where the probability distribution is characteristic of
the temperature and the anisotropy energy. The Boltzmann
distribution is given by:

P(✓) / sin ✓ exp
✓

�ku sin2 ✓

kBT

◆
(27)

where ✓ is the angle from the easy axis. The spin is initialized
along the easy axis direction and the system is allowed
to evolve for 108 time steps after equilibration, recording
the angle of the spin to the easy axis at each time. Since
the anisotropy energy is symmetric along the easy axis, the
probability distribution is reflected and summed about ⇡/2,
since at low temperatures the spin is confined to the upper
well (✓ < ⇡/2). Figure 7 shows the normalized probability
distribution for three reduced temperatures.

The agreement between the calculated distributions is
excellent, indicating a correct implementation of the stochastic
LLG equation.
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magnetization is well fitted by the function [15]

m(T ) =
(

1 − T

Tc

)β

. (8)

We note that Eqs. (4) and (8) are identical for the case of α = 1.
Fitting the simulated temperature-dependent magnetization
for Fe, Co, Ni, and Gd to Eq. (8) in our case yields an
apparently universal critical exponent of β = 0.340 ± 0.001
and a good estimate of the Curie temperature Tc within 1%
of the experimental values. In general β depends on both the
system size and the form of the spin Hamiltonian [38], hence
our use of a large system size and many averaging Monte
Carlo steps. We note that our calculated critical exponent
in all cases is closer to 0.34 as found experimentally for
Ni [39] rather than the 1/3 normally expected [22]. The
simulations confirm the ability of the atomistic spin model to
relate microscopic exchange interactions to the macroscopic
Curie temperature. However, as is evident from the Kuz’min
fits to the experimental data (see Fig. 1), the form of the
magnetization curve is seriously in error.

IV. TEMPERATURE RESCALING

To resolve the disparity in the temperature-dependent mag-
netization between the classical simulation and experiment
we proceed by implementing temperature rescaling to map the
simulations onto experiment in a quantitative manner. Similar
to Kuz’min [22], we assume in our fitting that the critical
exponent β is universal and thus the same for both the classical
simulation and experiment, so the only free fitting parameter is
α. Due to the limited availability of raw experimental data, we
use the equation proposed by Kuz’min as a substitute for the
experimental data since they agree extremely well [22]. This
also has the advantage of smoothing any errors in experimental
data. We proceed by fitting the Curie-Bloch equation given
by Eq. (4) to the Kuz’min equation given by Eq. (5),
where the parameters s and p are known fitting parameters
(determined from experimental data by Kuz’min [22]) and β ≃
0.34 and Tc are determined from the atomistic simulations.
The determined value of α then conveniently relates the result
of the classical simulation to the experimental data, allowing a
simple mapping as follows. The (internal) simulation tempera-
ture Tsim is rescaled so that for the input experimental (external)
temperature Texp the equilibrium magnetization agrees with the
experimental result. Tsim and Texp are related by the expression

Tsim

Tc
=

(
Texp

Tc

)α

. (9)

Thus, for a desired real temperature Texp, the simulation
will use an effective temperature within the Monte Carlo
or Langevin dynamics simulation of Texp, where for α > 1,
Tsim < Texp, leading to an effective reduction of the thermal
fluctuations in the simulation. The physical interpretation of
the rescaling is that at low temperatures the allowed spin
fluctuations in the classical limit are overestimated and so
this corresponds to a higher effective temperature than given
in the simulation. This is illustrated schematically in Fig. 2.

Clearly, different values of α in Eq. (9) lead to different
mappings between the experimental temperature and the
internal simulation temperature. Larger values of α lead to
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msim = 0.9

mexp = 0.9

FIG. 2. Schematic diagram of the rescaling applied to the
simulation of a magnetic material. The universe has a temperature
Texp = 300 K, which for an experimental sample has a macroscopic
magnetization length of mexp = M/M0

s = 0.9. Using the temperature
rescaling, this leads to an internal simulation temperature of Tsim =
50 K, which leads to a simulated equilibrium magnetization of
msim = 0.9. Therefore, macroscopically, mexp ≡ msim.

reduced thermal fluctuations in the spin model simulations,
owing to quantum mechanical “stiffness.” A plot of the
simulation temperature Tsim as a function of the input exper-
imental temperature Texp for different values of the rescaling
exponent α is shown in Fig. 3. Above Tc it is assumed that
Tsim = Texp due to the absence of magnetic order. For Monte
Carlo simulations the reduced simulation temperature appears
directly in the acceptance criteria P = exp(−#E/kBTsim)
for individual trial moves, thus reducing the probability of
acceptance and resulting in a larger magnetization length for
the system.

We now apply the temperature rescaling to the simulated
temperature-dependent magnetization for Fe, Co, Ni, and Gd
and directly compare the result to the experimental curve,
as shown by the corrected simulation data in Fig. 1, where
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magnetization is well fitted by the function [15]

m(T ) =
(

1 − T

Tc

)β

. (8)

We note that Eqs. (4) and (8) are identical for the case of α = 1.
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Ni [39] rather than the 1/3 normally expected [22]. The
simulations confirm the ability of the atomistic spin model to
relate microscopic exchange interactions to the macroscopic
Curie temperature. However, as is evident from the Kuz’min
fits to the experimental data (see Fig. 1), the form of the
magnetization curve is seriously in error.
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To resolve the disparity in the temperature-dependent mag-
netization between the classical simulation and experiment
we proceed by implementing temperature rescaling to map the
simulations onto experiment in a quantitative manner. Similar
to Kuz’min [22], we assume in our fitting that the critical
exponent β is universal and thus the same for both the classical
simulation and experiment, so the only free fitting parameter is
α. Due to the limited availability of raw experimental data, we
use the equation proposed by Kuz’min as a substitute for the
experimental data since they agree extremely well [22]. This
also has the advantage of smoothing any errors in experimental
data. We proceed by fitting the Curie-Bloch equation given
by Eq. (4) to the Kuz’min equation given by Eq. (5),
where the parameters s and p are known fitting parameters
(determined from experimental data by Kuz’min [22]) and β ≃
0.34 and Tc are determined from the atomistic simulations.
The determined value of α then conveniently relates the result
of the classical simulation to the experimental data, allowing a
simple mapping as follows. The (internal) simulation tempera-
ture Tsim is rescaled so that for the input experimental (external)
temperature Texp the equilibrium magnetization agrees with the
experimental result. Tsim and Texp are related by the expression

Tsim
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. (9)

Thus, for a desired real temperature Texp, the simulation
will use an effective temperature within the Monte Carlo
or Langevin dynamics simulation of Texp, where for α > 1,
Tsim < Texp, leading to an effective reduction of the thermal
fluctuations in the simulation. The physical interpretation of
the rescaling is that at low temperatures the allowed spin
fluctuations in the classical limit are overestimated and so
this corresponds to a higher effective temperature than given
in the simulation. This is illustrated schematically in Fig. 2.

Clearly, different values of α in Eq. (9) lead to different
mappings between the experimental temperature and the
internal simulation temperature. Larger values of α lead to
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simulation of a magnetic material. The universe has a temperature
Texp = 300 K, which for an experimental sample has a macroscopic
magnetization length of mexp = M/M0

s = 0.9. Using the temperature
rescaling, this leads to an internal simulation temperature of Tsim =
50 K, which leads to a simulated equilibrium magnetization of
msim = 0.9. Therefore, macroscopically, mexp ≡ msim.

reduced thermal fluctuations in the spin model simulations,
owing to quantum mechanical “stiffness.” A plot of the
simulation temperature Tsim as a function of the input exper-
imental temperature Texp for different values of the rescaling
exponent α is shown in Fig. 3. Above Tc it is assumed that
Tsim = Texp due to the absence of magnetic order. For Monte
Carlo simulations the reduced simulation temperature appears
directly in the acceptance criteria P = exp(−#E/kBTsim)
for individual trial moves, thus reducing the probability of
acceptance and resulting in a larger magnetization length for
the system.

We now apply the temperature rescaling to the simulated
temperature-dependent magnetization for Fe, Co, Ni, and Gd
and directly compare the result to the experimental curve,
as shown by the corrected simulation data in Fig. 1, where
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FIG. 1. Temperature dependent magnetization for the elemental ferromagnets (a) Co, (b) Fe, (c) Ni and (d) Gd. Circles give the simulated
mean magnetization, and dark solid lines show the corresponding fit according to Eq. (4) for the classical case α = 1. Light solid lines give
the experimentally measured temperature dependent magnetization as fitted by Kuz’min’s equation. Triangles give the simulated data after
the temperature rescaling has been applied showing excellent agreement with the experimentally measured magnetizations for all studied
materials. Inset are plots of the relative error of the rescaled magnetization compared to Kuz’min’s equation, showing less than 3% error for
all materials in the whole temperature range (a more restrictive 1% error is shown by the shaded region). The final fitting parameters are listed
in Tab. I. Color Online.

difficulty with the classical model is that the form of the curve
is intrinsically wrong when compared to experiment.

To determine the classical temperature dependent magneti-
zation for the elemental ferromagnets Co, Fe, Ni and Gd we
proceed to simulate them using the classical atomistic spin
model. The energetics of the system are described by the clas-
sical spin Hamiltonian[15] of the form

H =−∑
i< j

Ji jSi ·S j (6)

where Si and S j are unit vectors describing the direction of the
local and nearest neighbor magnetic moments at each atomic
site and Ji j is the nearest neighbor exchange energy given
by[28]

Ji j =
3kBTc

γz
(7)

where γ(W ) gives a correction factor from the MFA and which

for RPA γ = 1/W . The numerical calculations have been car-
ried out using the VAMPIRE software package[32]. The sim-
ulated system for Co, Ni, Fe and Gd consists of a cube 20
nm3 in size with periodic boundary conditions applied to re-
move any surface effects. The equilibrium temperature depen-
dent properties of the system are calculated using the Hinzke-
Nowak Monte Carlo algorithm[15, 33] resulting in the cal-
culated temperature dependent magnetization curves for each
element shown in Fig. 1. The classical spin model simu-
lations yield Curie temperatures with an error of less than
1% compared to the experimentally determined values. The
calculated critical exponent in all cases is close to 0.34 as
found experimentally for Ni[34] rather than the 1/3 normally
expected[22]. The simulations confirm the ability of the atom-
istic spin model to relate microscopic exchange interactions
to the macroscopic Curie temperature. However as is evident
from the Kuz’min fits to the experimental data (see Fig. 1) the
form of the magnetization curve is seriously in error.
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TABLE I. Fitting parameters for the temperature-dependent
magnetization derived from the classical spin model simulations by
fitting to Eq. (4) for α = 1 (Tc and β) and by secondary fitting to
Eq. (5) to obtain the rescaling factor α.

Co Fe Ni Gd

Tc (K) 1395 1049 635 294
β 0.340 0.339 0.341 0.339
α 2.369 2.876 2.322 1.278

the final fitted parameters are given in Table I. For Co, Ni,
and Gd the agreement between the rescaled simulation data
and the experimental measurement is remarkable given the
simplicity of the approach. The fit for Fe is not as good as
for the others due to the peculiarity of the experimentally
measured magnetization curve, as noted by Kuz’min [22].
However, the simple rescaling presented here is accurate to a
few percent over the whole temperature range, and if greater
accuracy is required, then a nonanalytic temperature rescaling
can be used to give exact agreement with the experimental data.

The ability of direct interpolation of Bloch’s law with
critical scaling to describe the temperature-dependent magne-
tization is significant for two reasons. First, it provides a simple
way to parametrize experimentally measured temperature-
dependent magnetization in terms of only three parameters
via Eq. (4). Second, it allows a direct and more accurate deter-
mination of the temperature dependence of all the parameters
needed for numerical micromagnetics at elevated temperatures
from first principles when combined with atomistic spin
model simulations [18–20]. We also expect the same form
is applicable to other technologically important composite
magnets such as CoFeB, NdFeB, or FePt alloys.

V. DYNAMIC TEMPERATURE RESCALING

We now proceed to demonstrate the power of the rescaling
method by considering magnetization dynamics using a
Langevin dynamics approach [15] with temperature rescaling.
The temperature rescaling can be used not only for equilib-
rium simulations at constant temperature but also dynamic
simulations where the temperature changes continuously. The
latter is particularly important for simulating the effects of
laser heating and also spin caloritronics with dynamic heating.
As an example, we simulate the laser-induced subpicosec-
ond demagnetization of Ni first observed experimentally by
Beaurepaire et al. [6]. The energetics of our Ni model are
given by the Heisenberg spin Hamiltonian

H = −
∑

i<j

Jij Si · Sj −
∑

i

kuS
2
i,z, (10)

where Jij = 2.757 × 10−21 J/link is the exchange energy
between nearest-neighboring Ni spins, Si and Sj are unit
vectors describing the direction of the local and neighboring
spin moments, respectively, and ku = 5.47 × 10−26 J/atom.

The dynamics of each atomic spin is given by the
stochastic Landau-Lifshitz-Gilbert (sLLG) equation applied
at the atomistic level, given by

∂Si

∂t
= − γe

(1 + λ2)

[
Si × Hi

eff + λSi ×
(
Si × Hi

eff

)]
, (11)

where γe = 1.76 × 1011 J T−1 s−1 is the gyromagnetic
ratio, λ = 0.001 is the phenomenological Gilbert damping
parameter, and Hi

eff is the net magnetic field on each atomic
spin. The sLLG equation describes the interaction of an
atomic spin moment i with an effective magnetic field, which
is obtained from the derivative of the spin Hamiltonian and the
addition of a Langevin thermal term, giving a total effective
field on each spin

Hi
eff = − 1

µs

∂H

∂Si

+ Hi
th, (12)

where µs = 0.606µB is the atomic spin moment. The thermal
field in each spatial dimension is represented by a normal
distribution !(t) with a standard deviation of 1 and mean of
zero. The thermal field is given by

Hi
th = !(t)

√
2λkBTsim

γeµs&t
, (13)

where kB is the Boltzmann constant, &t is the integration
time step, and Tsim is the rescaled simulation temperature
from Eq. (9). As with the Monte Carlo simulations, this
reduces the thermal fluctuations in the sLLG and leads to
a higher equilibrium magnetization length compared to the
usual classical simulations. However, unlike Monte Carlo
simulations, the explicit time scale in the sLLG equation
allows the simulation of dynamic processes, particularly with
dynamic changes in the temperature associated with ultrafast
laser heating. In this case the temporal evolution of the electron
temperature can be calculated using a two-temperature
model [40], considering the dynamic response of the electron
(T exp

e ) and lattice (T exp
l ) temperatures. To be explicit, when

including the temperature rescaling, the two-temperature
model always refers to the real, or experimental, temperature
Texp; here Tsim applies only to the magnetic part
of the simulation where the thermal fluctuations are
included. The time evolution of T

exp
e and T

exp
l is given by [40]

Ce

∂T
exp
e

∂t
= −G

(
T exp

e − T
exp
l

)
+ S(t), (14)

Cl

∂T
exp
l

∂t
= −G

(
T

exp
l − T exp

e

)
, (15)

where Ce and Cl are the electron and lattice heat capacities,
G is the electron-lattice coupling factor, and S(t) is a
time-dependent Gaussian pulse with a FWHM of 60 fs which
adds energy to the electron system representing the laser
pulse. The time evolution of the electron temperature is solved
numerically using a simple Euler scheme. The parameters used
are representative of Ni [41], with G = 12 × 1017 W m−3 K−1,
Ce = 8 × 102 J m−3 K−1, and Cl = 4 × 106 J m−3 K−1. The
sLLG is solved numerically using the time-dependent electron
temperature rescaled using Eq. (9) with the Heun numerical
scheme [15] and a time step of &t = 1 × 10−16 s.

To simulate the effects of a laser pulse on Ni, we model
a small system of (8 nm)3 which is first equilibrated at
Texp = 300 K for 20 ps, sufficient to thermalize the system.
The temperature of the spin system is linked to the electron
temperature, so a simulated laser pulse leads to a transient
increase of the temperature, inducing ultrafast magnetization

144425-5

QUANTITATIVE SIMULATION OF TEMPERATURE- . . . PHYSICAL REVIEW B 91, 144425 (2015)

TABLE I. Fitting parameters for the temperature-dependent
magnetization derived from the classical spin model simulations by
fitting to Eq. (4) for α = 1 (Tc and β) and by secondary fitting to
Eq. (5) to obtain the rescaling factor α.

Co Fe Ni Gd

Tc (K) 1395 1049 635 294
β 0.340 0.339 0.341 0.339
α 2.369 2.876 2.322 1.278

the final fitted parameters are given in Table I. For Co, Ni,
and Gd the agreement between the rescaled simulation data
and the experimental measurement is remarkable given the
simplicity of the approach. The fit for Fe is not as good as
for the others due to the peculiarity of the experimentally
measured magnetization curve, as noted by Kuz’min [22].
However, the simple rescaling presented here is accurate to a
few percent over the whole temperature range, and if greater
accuracy is required, then a nonanalytic temperature rescaling
can be used to give exact agreement with the experimental data.

The ability of direct interpolation of Bloch’s law with
critical scaling to describe the temperature-dependent magne-
tization is significant for two reasons. First, it provides a simple
way to parametrize experimentally measured temperature-
dependent magnetization in terms of only three parameters
via Eq. (4). Second, it allows a direct and more accurate deter-
mination of the temperature dependence of all the parameters
needed for numerical micromagnetics at elevated temperatures
from first principles when combined with atomistic spin
model simulations [18–20]. We also expect the same form
is applicable to other technologically important composite
magnets such as CoFeB, NdFeB, or FePt alloys.

V. DYNAMIC TEMPERATURE RESCALING

We now proceed to demonstrate the power of the rescaling
method by considering magnetization dynamics using a
Langevin dynamics approach [15] with temperature rescaling.
The temperature rescaling can be used not only for equilib-
rium simulations at constant temperature but also dynamic
simulations where the temperature changes continuously. The
latter is particularly important for simulating the effects of
laser heating and also spin caloritronics with dynamic heating.
As an example, we simulate the laser-induced subpicosec-
ond demagnetization of Ni first observed experimentally by
Beaurepaire et al. [6]. The energetics of our Ni model are
given by the Heisenberg spin Hamiltonian

H = −
∑

i<j

Jij Si · Sj −
∑

i

kuS
2
i,z, (10)

where Jij = 2.757 × 10−21 J/link is the exchange energy
between nearest-neighboring Ni spins, Si and Sj are unit
vectors describing the direction of the local and neighboring
spin moments, respectively, and ku = 5.47 × 10−26 J/atom.

The dynamics of each atomic spin is given by the
stochastic Landau-Lifshitz-Gilbert (sLLG) equation applied
at the atomistic level, given by

∂Si

∂t
= − γe

(1 + λ2)

[
Si × Hi

eff + λSi ×
(
Si × Hi

eff

)]
, (11)

where γe = 1.76 × 1011 J T−1 s−1 is the gyromagnetic
ratio, λ = 0.001 is the phenomenological Gilbert damping
parameter, and Hi

eff is the net magnetic field on each atomic
spin. The sLLG equation describes the interaction of an
atomic spin moment i with an effective magnetic field, which
is obtained from the derivative of the spin Hamiltonian and the
addition of a Langevin thermal term, giving a total effective
field on each spin

Hi
eff = − 1

µs

∂H

∂Si

+ Hi
th, (12)

where µs = 0.606µB is the atomic spin moment. The thermal
field in each spatial dimension is represented by a normal
distribution !(t) with a standard deviation of 1 and mean of
zero. The thermal field is given by

Hi
th = !(t)

√
2λkBTsim

γeµs&t
, (13)

where kB is the Boltzmann constant, &t is the integration
time step, and Tsim is the rescaled simulation temperature
from Eq. (9). As with the Monte Carlo simulations, this
reduces the thermal fluctuations in the sLLG and leads to
a higher equilibrium magnetization length compared to the
usual classical simulations. However, unlike Monte Carlo
simulations, the explicit time scale in the sLLG equation
allows the simulation of dynamic processes, particularly with
dynamic changes in the temperature associated with ultrafast
laser heating. In this case the temporal evolution of the electron
temperature can be calculated using a two-temperature
model [40], considering the dynamic response of the electron
(T exp

e ) and lattice (T exp
l ) temperatures. To be explicit, when

including the temperature rescaling, the two-temperature
model always refers to the real, or experimental, temperature
Texp; here Tsim applies only to the magnetic part
of the simulation where the thermal fluctuations are
included. The time evolution of T

exp
e and T

exp
l is given by [40]

Ce

∂T
exp
e

∂t
= −G

(
T exp

e − T
exp
l

)
+ S(t), (14)

Cl

∂T
exp
l

∂t
= −G

(
T

exp
l − T exp

e

)
, (15)

where Ce and Cl are the electron and lattice heat capacities,
G is the electron-lattice coupling factor, and S(t) is a
time-dependent Gaussian pulse with a FWHM of 60 fs which
adds energy to the electron system representing the laser
pulse. The time evolution of the electron temperature is solved
numerically using a simple Euler scheme. The parameters used
are representative of Ni [41], with G = 12 × 1017 W m−3 K−1,
Ce = 8 × 102 J m−3 K−1, and Cl = 4 × 106 J m−3 K−1. The
sLLG is solved numerically using the time-dependent electron
temperature rescaled using Eq. (9) with the Heun numerical
scheme [15] and a time step of &t = 1 × 10−16 s.

To simulate the effects of a laser pulse on Ni, we model
a small system of (8 nm)3 which is first equilibrated at
Texp = 300 K for 20 ps, sufficient to thermalize the system.
The temperature of the spin system is linked to the electron
temperature, so a simulated laser pulse leads to a transient
increase of the temperature, inducing ultrafast magnetization
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FIG. 2. Simulated demagnetization of Ni comparing classical and
rescaled models with experimental data from [6]. The rescaled
dynamic simulations show quantitative agreement with experiment
from an atomic level model. Color Online.

For the rescaling of the simulation results to the experimen-
tal data, we therefore map the as-calculated temperature de-
pendent properties to a real temperature T̃ that is equivalent
to the experimental measurement temperature. The reduced
real temperature τ̃ = T̃/Tc is given by

τ̃ = τ
1
α (8)

where α is the scaling exponent from Eq. (4). The physical
interpretation of the rescaling is that at low temperatures the
allowed spin fluctuations in the classical limit are over esti-
mated and so this corresponds to a higher effective tempera-
ture than given in the simulation.

Using this simple temperature rescaling we can now obtain
the scaling exponent α by fitting the simulated temperature
dependent magnetization to the experimental data. α is deter-
mined by a two-step fitting procedure. First Eq. (4) is fitted to
the simulated temperature dependent magnetization to obtain
Tc and β for α = 1. Fixing Tc and β , Eq. (4) is then fitted
to the experimental data as given by Eq. (5) to obtain α . The
final fitted parameters are given in Tab. I. The temperature
rescaling is then applied to the simulated temperature depen-
dent magnetization and directly compared to the experimen-
tal line, as shown by the corrected simulation data in Fig. 1.
For Co, Ni and Gd the agreement between the rescaled sim-
ulation data and the experimental measurement is remarkable
given the simplicity of the approach. The fit for Fe is not as
good as for the others due to the peculiarity of the experimen-
tally measured magnetization curve, as noted by Kuz’min[22].
However the simple rescaling presented here is accurate to a
few percent over the whole temperature range, and if greater
accuracy is required then a non-analytic temperature rescal-
ing can be used to give exact agreement with the experimental
data.

The ability of direct interpolation of Bloch’s Law with crit-
ical scaling to describe the temperature dependent magnetiza-
tion is significant for two reasons. Firstly, it provides a sim-

TABLE I. Fitting parameters for the temperature dependent magne-
tization derived from the classical spin model simulations by fitting
to Eq. (4) for α = 1 (Tc and β ) and by secondary fitting to Eq. (5) to
obtain the rescaling factor α .

Co Fe Ni Gd
Tc 1395 1049 635 294
β 0.340 0.339 0.341 0.339
α 2.369 2.876 2.322 1.278

ple way to parameterize experimentally measured temperature
dependent magnetization in terms of only three parameters
via Eq. (4). Secondly, it allows a direct and accurate deter-
mination of the temperature dependence of all the parame-
ters needed for numerical micromagnetics at elevated temper-
atures from first principles when combined with atomistic spin
model simulations. We also expect the same form is appli-
cable to other technologically important composite magnets
such as CoFeB, NdFeB or FePt alloys.

We now proceed to demonstrate the power of the rescal-
ing method by considering magnetization dynamics using a
Langevin dynamics approach[15] with temperature rescaling
to investigate the laser-induced sub picosecond demagnetiza-
tion of Ni first observed experimentally by Beaurepaire et al.
[6]. The laser pulse is simulated using the two temperature
model[35] with parameters obtained for Ni[36]. The simu-
lated magnetization dynamics for the classical and rescaled
calculations are shown along with the experimental results
in Fig. 2. As expected the standard classical model shows
poor agreement with experiment because of the incorrect
m(T ). However, after applying dynamic temperature rescal-
ing quantitative agreement is found between the atomistic
model and experiment. This result fully validates our ap-
proach by demonstrating the ability to describe both equilib-
rium and dynamic properties of magnetic materials at all tem-
peratures.

In conclusion, we have performed atomistic spin model
simulations of the temperature dependent magnetization of
the elemental ferromagnets Ni, Fe, Co and Gd to determine
the Curie temperature directly from the microscopic exchange
interactions. Using a simple temperature rescaling consid-
ering classical and quantum spin wave fluctuations we find
quantitative agreement between the simulations and experi-
ment for the temperature dependent magnetization. By rescal-
ing the temperature in this way it is now possible to derive
all temperature dependent magnetic properties in quantita-
tive agreement with experiment from a microscopic atomistic
model. In addition we have shown the applicability of the ap-
proach to modeling ultrafast magnetization dynamics, also in
quantitative agreement with experiment. This approach now
enables accurate temperature dependent simulations of mag-
netic materials suitable for a wide range of materials of prac-
tical and fundamental interest.

Finally it is interesting to ponder what is the physical origin

Ni

R. F. L. Evans et al, Phys. Rev. B 91, 144425 (2015)
E. Beaurepaire et al, Phys. Rev. Lett. 76, 4250 (1996)

Ultrafast demagnetization in Ni



Challenge: reproduce and Ms(T) curve for  
Nickel including temperature rescaling



Practical 3: System Generation



View your structures with rasmol

Compile vdc (VAMPIRE data convertor) utility

Run the vdc utility

View the generated structure with rasmol

make vdc

/path/to/vdc/vdc

rasmol -xyz crystal.xyz



Enable configuration output

Enable output with default parameters

Change output rate (as multiple of main data output rate)

Select slices of the data

config:atoms

config:atoms-output-rate = 100

config-atoms



http://vampire.york.ac.uk/tutorials/



Challenge: generate a single material structure 
and core-shell structure



Challenge: generate a voronoi grain structure

create:voronoi-film 
create:voronoi-rounded-grains 

dimensions:particle-size = 6.0 !nm 
dimensions:particle-spacing = 1.0 !nm 

(Also compatible with multilayers/core shell structures)



Unit cells with more than one material

Develop branch has new feature better supporting unit cells (and 
unit cell files) with more than one material

Example Rocksalt (CsCl) structure now built-in 

Associate different materials in unit cell with different materials in 
VAMPIRE

create:crystal-structure = rocksalt

material[1]:unit-cell-category = 1 
material[2]:unit-cell-category = 2



Non-magnetic materials

Develop branch now has support for non-magnetic atoms for 
improved visualisation and also effects such as SO coupling

Can identify a material as non-magnetic (removed from simulation)

Or non-magnetic (keep in simulation but not in statistics/dipole)

Using vdc utility removed atoms are retained for visualisation

material[1]:non-magnetic = remove

material[1]:non-magnetic = keep



Challenge: generate a core-shell nanoparticle  
                   with a multiple material unit cell



Practical 4: Statistics



Magnetization statistics

VAMPIRE contains a range of methods for calculating statistical 
properties

Can output total magnetization specified in input file

Data output is in 4 columns (unit vector and length)

Can control rate of output as a multiple of increment

output:magnetisation

mx my mz |m|^  ^  ^

output:output-rate = 10



Average statistics

Average (mean) data can also be selected (seen earlier) 

Generally want a time step increment of 1-5 (rate at which 
statistics are calculated)

Time series calculations produce a running average (useful for 
convergence)

Loop calculations produce average at end of loop increment 
(temperature, field etc)

output:mean-magnetisation-length



Material/height statistics

Can slice magnetization data by material and/or height

Very useful for analysing sublattice magnetization in the case of 
multiple materials or domain wall processes

output:magnetisation 
output:material-magnetisation 
output:height-magnetisation 

output:height-material-magnetisation 



Challenge:  

Calculate sublattice M(T) curves for rock salt 
structure with two materials and different 
exchange constants
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where rx , ry , rz are the components of the unit vector in the
direction p ! q, and rpq is the separation of macrocells. Since
the matrix is symmetric along the diagonal only six numbers
need to be stored in memory. The total demagnetization field
for each macrocell p is then given by:

Hmc,p
demag = µ0

4⇡

0

@
X

p 6=q

Mpq · mmc
q

1

A � µ0

3
mmc

p

V p
mc

. (34)

The relative performance of the matrix optimization is plotted
for comparison in figure 11(b), showing a significant reduction
in runtime. Where the computer memory is sufficiently large,
the recalculated matrix should always be employed for optimal
performance.

In addition to variable macrocell sizes, due to the small
time steps employed in atomistic models and that the mag-
netization is generally a slowly varying property, it is not
always necessary to update the demagnetization fields every
single time step. Hysteresis loops for different times between
updates of the demagnetization field are plotted in figure 11(c).
In general hysteresis calculations are sufficiently accurate
with a picosecond update of the demagnetizing field, which
significantly reduces the computational cost.

In general good accuracy for the demagnetizing field
calculation can be achieved with coarse discretization and
infrequent updates, but fast dynamics such as those induced
by laser excitation require much faster updates, or simulation
of domain wall processes in high anisotropy materials requires
finer discretizations to achieve correct results.

5.4.3. Demagnetizing field in a prolate ellipsoid. Since the
macrocell approach works well in platelets and nanodots, it
is also interesting to apply the same method to a slightly
more complex system: a prolate ellipsoid. An ellipsoid adds
an effective shape anisotropy due to the demagnetization
field, and so for a particle with uniaxial magnetocrystalline
anisotropy along the elongated direction (z), the calculated
coercivity should increase according to the difference in the
demagnetization field along x and z, given by:

H shape
dm = +1Nµ0 Ms (35)

where 1N = Nz � Nx . The demagnetizing factors Nx , Ny ,
and Nz are known analytically for various ellipticities [131],
and here we assume a/c = b/c = 0.5, where a, b, and c are
the extent of the ellipsoid along x , y and z respectively.

To verify the macrocell approach gives the same expected
increase of the coercivity we have simulated a generic ferro-
magnet with atomic moment 1.5 µB, an FCC crystal structure
with lattice spacing 3.54 Å and anisotropy field of Ha = 1 T.
The particle is cut from the lattice in the shape of an ellipsoid,
of diameter 10 nm and height of 20 nm, as shown inset in
figure 12. A macrocell size of 2 unit cells is used, which is
updated every 100 time steps (0.1 ps).

As expected the coercivity increases due to the shape
anisotropy. From [131] the expected increase in the coercivity
is H shape

dm = 0.37 T which compares well to the simulated
increase of 0.33 T.

Figure 12. Simulated hysteresis loops for an ellipsoidal nanoparticle
with an axial ratio of 2 showing the effect of the demagnetizing field
calculated with the macrocell approach. A visualization of the
simulated particle is inset.

6. Parallel implementation and scaling

Although the algorithms and methods discussed in the preced-
ing sections describe the mechanics of atomistic spin models, it
is important to note finally the importance of parallel process-
ing in simulating realistic systems which include many-particle
interactions, or nano patterned elements with large lateral
sizes. Details of the parallelization strategies which have been
adopted to enable the optimum performance of VAMPIRE for
different problems are presented in appendix C. In general
terms the parallelization works by subdividing the simulated
system into sections, with each processor simulating part of
the complete system. Spin orientations at the processor bound-
aries have to be exchanged with neighbouring processors to
calculate the exchange interactions, which for small problems
and large numbers of processors can significantly reduce
the parallel efficiency. The use of latency hiding, where the
local spins are calculated in parallel with the inter-processor
communications, is essential to ensure good scaling for these
problems.

To demonstrate the performance and scalability of VAM-

PIRE, we have performed tests for three different system sizes:
small (10 628 spins), medium (8 ⇥ 105 spins), and large (8 ⇥
106 spins). We have access to two Beowulf-class clusters; one
with 8 cores/node with an Infiniband 10 Gbps low-latency
interconnect, and another with 4 cores/node with a Gigabit
Ethernet interconnect. For parallel simulations the intercon-
nect between the nodes can be a limiting factor for increasing
performance with increasing numbers of processors, since
as more processors are added, each has to do less work per
time step. Eventually network communication will dominate
the calculation since processors with small amounts of work
require the data from other processors in shorter times, leading
to a drop in performance. The scaling performance of the
code for 100 000 time steps on both machines is presented in
figure 13.

The most challenging case for parallelization is the small
system size, since a significant fraction of the system must
be communicated to other processors during each timestep.

15

Practical 5: Hysteresis 
simulations



Hysteresis calculations

Generally a ‘slow’ process - typically 10s of nanoseconds

For comparison with experiment, use high damping limit, λ = 1

Coercivity strongly field rate dependent - slower is better!



input file

sim:loop-time-steps=100000 
sim:program=hysteresis-loop 
sim:integrator=llg-heun 
sim:time-step=1.0e-15 
sim:temperature = 0 
sim:equilibration-applied-field-strength = 2.0 !T 
sim:maximum-applied-field-strength = 2.0 !T 
sim:applied-field-strength-increment = 0.01 !T 
sim:applied-field-angle-phi = 0.1 # (degrees from z) 

output:real-time 
output:applied-field-strength 
output:applied-field-alignment 
output:magnetisation 



hysteresis-loop program

Cycles field from +Hmax to -Hmax in a user defined increment

Calculates dynamic response of the magnetisation to the field

J. Phys.: Condens. Matter 26 (2014) 103202 Topical Review

where rx , ry , rz are the components of the unit vector in the
direction p ! q, and rpq is the separation of macrocells. Since
the matrix is symmetric along the diagonal only six numbers
need to be stored in memory. The total demagnetization field
for each macrocell p is then given by:

Hmc,p
demag = µ0
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The relative performance of the matrix optimization is plotted
for comparison in figure 11(b), showing a significant reduction
in runtime. Where the computer memory is sufficiently large,
the recalculated matrix should always be employed for optimal
performance.

In addition to variable macrocell sizes, due to the small
time steps employed in atomistic models and that the mag-
netization is generally a slowly varying property, it is not
always necessary to update the demagnetization fields every
single time step. Hysteresis loops for different times between
updates of the demagnetization field are plotted in figure 11(c).
In general hysteresis calculations are sufficiently accurate
with a picosecond update of the demagnetizing field, which
significantly reduces the computational cost.

In general good accuracy for the demagnetizing field
calculation can be achieved with coarse discretization and
infrequent updates, but fast dynamics such as those induced
by laser excitation require much faster updates, or simulation
of domain wall processes in high anisotropy materials requires
finer discretizations to achieve correct results.

5.4.3. Demagnetizing field in a prolate ellipsoid. Since the
macrocell approach works well in platelets and nanodots, it
is also interesting to apply the same method to a slightly
more complex system: a prolate ellipsoid. An ellipsoid adds
an effective shape anisotropy due to the demagnetization
field, and so for a particle with uniaxial magnetocrystalline
anisotropy along the elongated direction (z), the calculated
coercivity should increase according to the difference in the
demagnetization field along x and z, given by:

H shape
dm = +1Nµ0 Ms (35)

where 1N = Nz � Nx . The demagnetizing factors Nx , Ny ,
and Nz are known analytically for various ellipticities [131],
and here we assume a/c = b/c = 0.5, where a, b, and c are
the extent of the ellipsoid along x , y and z respectively.

To verify the macrocell approach gives the same expected
increase of the coercivity we have simulated a generic ferro-
magnet with atomic moment 1.5 µB, an FCC crystal structure
with lattice spacing 3.54 Å and anisotropy field of Ha = 1 T.
The particle is cut from the lattice in the shape of an ellipsoid,
of diameter 10 nm and height of 20 nm, as shown inset in
figure 12. A macrocell size of 2 unit cells is used, which is
updated every 100 time steps (0.1 ps).

As expected the coercivity increases due to the shape
anisotropy. From [131] the expected increase in the coercivity
is H shape

dm = 0.37 T which compares well to the simulated
increase of 0.33 T.

Figure 12. Simulated hysteresis loops for an ellipsoidal nanoparticle
with an axial ratio of 2 showing the effect of the demagnetizing field
calculated with the macrocell approach. A visualization of the
simulated particle is inset.

6. Parallel implementation and scaling

Although the algorithms and methods discussed in the preced-
ing sections describe the mechanics of atomistic spin models, it
is important to note finally the importance of parallel process-
ing in simulating realistic systems which include many-particle
interactions, or nano patterned elements with large lateral
sizes. Details of the parallelization strategies which have been
adopted to enable the optimum performance of VAMPIRE for
different problems are presented in appendix C. In general
terms the parallelization works by subdividing the simulated
system into sections, with each processor simulating part of
the complete system. Spin orientations at the processor bound-
aries have to be exchanged with neighbouring processors to
calculate the exchange interactions, which for small problems
and large numbers of processors can significantly reduce
the parallel efficiency. The use of latency hiding, where the
local spins are calculated in parallel with the inter-processor
communications, is essential to ensure good scaling for these
problems.

To demonstrate the performance and scalability of VAM-

PIRE, we have performed tests for three different system sizes:
small (10 628 spins), medium (8 ⇥ 105 spins), and large (8 ⇥
106 spins). We have access to two Beowulf-class clusters; one
with 8 cores/node with an Infiniband 10 Gbps low-latency
interconnect, and another with 4 cores/node with a Gigabit
Ethernet interconnect. For parallel simulations the intercon-
nect between the nodes can be a limiting factor for increasing
performance with increasing numbers of processors, since
as more processors are added, each has to do less work per
time step. Eventually network communication will dominate
the calculation since processors with small amounts of work
require the data from other processors in shorter times, leading
to a drop in performance. The scaling performance of the
code for 100 000 time steps on both machines is presented in
figure 13.

The most challenging case for parallelization is the small
system size, since a significant fraction of the system must
be communicated to other processors during each timestep.
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Challenge:  

Generate M(H) curves for a (1 nm)3 sample at 0K 
for different field rates, anisotropy and damping 



Questions

What happens to the hysteresis loop if you change loop-time?

How many steps (field rate) do you need to reach the limit Hc = 
2ku/μs

What effect does changing the field angle have?

What effect does the damping have?


